Vol. 72

Latest Volume
All Volumes
All Issues
2017-12-06

The Research of W-Band High Order Frequency Multiplier Based on Avalanche Diode

By Lingling Song and Minghua Zhao
Progress In Electromagnetics Research Letters, Vol. 72, 45-53, 2018
doi:10.2528/PIERL17092109

Abstract

A research of millimeter wave high order frequency multiplier based on the fierce inductive nonlinearity of avalanche diode is presented. The operation of high order frequency multiplication is introduced, and the high order harmonics generation character under external RF field modulation is analyzed. The characteristc of multiplier circuit is also discussed. Maximum output power of 6 mW and minimum conversion loss of 17 dB are obtained at output frequencies of 94 GHz and 96 GHz with 15th multiplication order. The phase noise of output 94 GHz signal is about -90 dBc/Hz and -94.33 dBc/Hz at 10 kHz and 100 kHz offset.

Citation


Lingling Song and Minghua Zhao, "The Research of W-Band High Order Frequency Multiplier Based on Avalanche Diode," Progress In Electromagnetics Research Letters, Vol. 72, 45-53, 2018.
doi:10.2528/PIERL17092109
http://test.jpier.org/PIERL/pier.php?paper=17092109

References


    1. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of an oscillator with distributed element resonator," Progress In Electromagnetics Research, Vol. 80, 241-252, 2008.
    doi:10.2528/PIER07111701

    2. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
    doi:10.2528/PIER07100101

    3. Shi, Z.-G., S. Qiao, and K. S. Chen, "Ambiguity functions of direct chaotic radar employing microwave chaotic colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
    doi:10.2528/PIER07072001

    4. Mokari, H. and P. Derakhshan-Barjoei, "Numerical analysis of homojunction gallium arsenide avalanche," Progress In Electromagnetics Research B, Vol. 7, 159-172, 2008.
    doi:10.2528/PIERB08032702

    5. Seyedi, M. H., "Numerical analysis of homojunction avalanche photodiodes (APDs)," Progress In Electromagnetics Research C, Vol. 3, 45-56, 2008.
    doi:10.2528/PIERC08013004

    6. Akbarzade, M., D. D. Ganji, and M. H. Pashaei, "Analysis of nonlinear oscillators with U force by He’s energy balance method," Progress In Electromagnetics Research C, Vol. 3, 57-66, 2008.
    doi:10.2528/PIERC08032901

    7. Zhang, H., J. Wang, and C. Tong, "Progress in theoretical design and numerical simulation of high power terahertz backward wave oscillator," PIERS Online, Vol. 4, No. 3, 311-315, 2008.
    doi:10.2529/PIERS071001065701

    8. Lin, M.-C. and P.-S. Lu, "An injection-locked millimeter wave oscillator based on field-emission cathodes," PIERS Online, Vol. 4, No. 3, 371-375, 2008.
    doi:10.2529/PIERS070906183455

    9. Peidaee, P. and A. Baghai-Wadji, "On the calculation of polynomially perturbed harmonic oscillators," PIERS Online, Vol. 3, No. 4, 485-489, 2007.
    doi:10.2529/PIERS061202155000

    10. Lin, M.-C. and P. S. Lu, "Interaction mechanism of a field emission based THz oscillator," PIERS Online, Vol. 3, No. 7, 1011-1015, 2007.
    doi:10.2529/PIERS061007104929

    11. Chen, Z. and J. Xu, "Design and characterization of aW-band power-combined frequency tripler for high-power and broadband operation," Progress In Electromagnetics Research, Vol. 134, 133-150, 2013.
    doi:10.2528/PIER12092009

    12. Siles, J. V., et al., "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," Microwave and Wireless Components Letters, Vol. 25, No. 3, 157-159, 2015.
    doi:10.1109/LMWC.2015.2390539

    13. Bao, M., R. Kozhuharov, and H. Zirath, "A high power-efficiency D-band frequency tripler MMIC with gain up to 7 dB," Microwave and Wireless Components Letters, Vol. 24, No. 2, 123-125, 2014.
    doi:10.1109/LMWC.2013.2290273

    14. Kim, S. K., et al., "A W-band signal generation using N-push frequency multipliers for low phase noise," Microwave and Wireless Components Letters, Vol. 24, No. 10, 710-712, 2014.
    doi:10.1109/LMWC.2014.2342873

    15. Siles, J. V., et al., "A high-power 105–120 GHz broadband on-chip power-combined frequency tripler," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 157-159, 2015.
    doi:10.1109/LMWC.2015.2390539

    16. Rolland, P. A., J. L. Vaterkowski, E. Constant, and G. Salmer, "New modes of operation for avalanche diodes: Frequency multiplication and upconversion," IEEE Trans. Microwave Theory Tech., Vol. 24, 768-775, 1976.
    doi:10.1109/TMTT.1976.1128958

    17. Ermak, G. P. and A. V. Varavin, "2-mm wave vector network analyzer upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 27, 681-686, 2006.

    18. Ermak, G. P., A. V. Varavin, and E. A. Alekseev, "Phase locking of 2-mm wave sources upon high-order IMPATT multipliers," International Journal of Infrared and Millimeter Waves, Vol. 24, 1609-1615, 2003.
    doi:10.1023/A:1026079116516

    19. Huang, J., T. Gan, and Y. Zou, A novel W-band fully coherent solid-state radar transceiver, 2001 CIE International Conference on Proceedings Radar, 907-911, 2001.

    20. Zhao, M., Y. Fan, and Y. Zhang, "The W-band high order avalanche diode frequency multipliers," International Journal of Infrared and Millimeter Waves, Vol. 28, 663-669, 2007.
    doi:10.1007/s10762-007-9238-4

    21. Rolland, P. A., G. Salmer, A. Derycke, and J. Michel, "Very-high-rank avalanche diode frequency multiplier," Proceedings of the IEEE, Vol. 61, 1757-1758, 1973.
    doi:10.1109/PROC.1973.9365

    22. Rolland, P. A., E. Constant, A. Derycke, and J. Michel, "Multiplication de frequence par diode a avalanche en ondes millimetriques," Acts Electronics, Vol. 17, 213-228, 1974.

    23. Kramer, B. M., A. C. Derycke, A. Farrayre, and C. F. Masse, "High-efficiency frequency multiplication with GaAs avalanche diodes," IEEE Trans. Microwave Theory Tech., Vol. 24, 861-863, 1976.
    doi:10.1109/TMTT.1976.1128976

    24. Venger, A. Z., A. N. Ermak, and A. M. Yakimenko, "Frequency multiplier based on an avalancheand- transit diode," Instruments and Experimental Techniques, Vol. 23, 691-692, 1980.

    25. Haddad, G. I., P. T. Greiling, and W. E. Schroeder, "Basic principles and properties of avalanche transit-time devices," IEEE Trans. Microwave Theory Tech., Vol. 18, 752-772, 1970.
    doi:10.1109/TMTT.1970.1127352

    26. Read, W. T., "A proposed high frequency negative resistance diode," Bell System Tech. Journal, Vol. 37, 400-446, 1958.

    27. Constant, E., E. Allamando, and A. Semichon, "Transit-time operation of an avalanche diode driven by a subharmonic signal and its application to frequency multiplication," Proceeding of the IEEE, Vol. 58, 483-484, 1970.
    doi:10.1109/PROC.1970.7662

    28. Gilden, M. and M. E. Hines, "Electronic tuning effects in the read microwave avalanche diode," IEEE Transactions on Electron Devices, Vol. 13, 169-175, 1966.
    doi:10.1109/T-ED.1966.15652

    29. Sze, S. M., Physics of Semiconductor Devices, 3rd Ed., Wiley, New York, 2006.
    doi:10.1002/0470068329

    30. Zhao, M., J. Zhan, Y. Fan, Z. He, and Y. Zhang, "A novel W-band microstrip integrated avalanche diode high order frequency multiplier," International Journal of Infrared and Millimeter Waves, Vol. 29, 741-747, 2008.
    doi:10.1007/s10762-008-9371-8

    31. Wu, Z., "Electromagnetic analysis of the oscillator with a cap structure," Journal of Chengdu Institution of Radio Engineer, Vol. 4, 68-77, 1981.

    32. Zhao, M., Y. Fan, D. Wu, and Z. He, "The investigation of Wband microstrip integrated high order frequency multiplier based on the nonlinear model of avalanche diode," Progress In Electromagnetics Research, Vol. 85, 439-453, 2008.
    doi:10.2528/PIER08090702