Vol. 71

Latest Volume
All Volumes
All Issues
2017-11-25

Graphene-Based THz Tunable Bandstop Filter with Constant Absolute Bandwidth

By Mengdan Kong, Yongle Wu, Zheng Zhuang, Weimin Wang, and Yuan'an Liu
Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017
doi:10.2528/PIERL17101301

Abstract

In this paper, a novel terahertz tunable bandstop filter with constant absolute bandwidth is proposed, which consists of graphene-based three-section L resonators. In order to perform bandstop property, the L resonator is used and analyzed in details based on the traditional Z matrix and ABCD matrix. With the introduction of graphene materials, the operating frequency of bandstop filter can be extended to terahertz. Moreover, the tunable performance with constant absolute bandwidth can be achieved by only loading different chemical potentials on a graphene surface. For demonstration, a terahertz tunable bandstop filter prototype is designed and simulated with chemical potentials of 0.1, 0.3, and 1 eV. The simulated results agree well with the anticipation perfectly.

Citation


Mengdan Kong, Yongle Wu, Zheng Zhuang, Weimin Wang, and Yuan'an Liu, "Graphene-Based THz Tunable Bandstop Filter with Constant Absolute Bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.
doi:10.2528/PIERL17101301
http://test.jpier.org/PIERL/pier.php?paper=17101301

References


    1. Zhang, X. Y., C. H. Chan, Q. Xue, and B.-J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Trans. Ind. Electron., Vol. 59, 1257-1265, 2012.
    doi:10.1109/TIE.2011.2158038

    2. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
    doi:10.2528/PIER10100808

    3. Saeedi, S., J. Lee, and H. H. Sigmarsson, "Novel coupling matrix synthesis for single-layer substrateintegrated evanescent-mode cavity tunable bandstop filter design," IEEE Trans. Microw. Theory Techn., Vol. 63, 3929-3938, 2015.
    doi:10.1109/TMTT.2015.2490075

    4. Jeong, S. and J. Lee, "Frequency- and bandwidth-tunable bandstop filter containing variable coupling between transmission line and resonator," IEEE Trans. Microw. Theory Techn., No. 99, 1-11, 2017.

    5. Guyette, A. C., E. J. Naglich, and S. Shin, "RF-power-activated and signal-tracking tunable bandstop filters," IEEE Trans. Microw. Theory Techn., Vol. 65, 1534-1544, 2017.
    doi:10.1109/TMTT.2016.2645569

    6. Esmaeili, M. and J. Bornemann, "Novel tunable bandstop resonators in SIW technology and their application to a dual-bandstop filter with one tunable stopband," IEEE Microw. Compon. Lett., Vol. 27, 40-42, 2017.
    doi:10.1109/LMWC.2016.2630007

    7. Wu, D., N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett., Vol. 83, 201-203, 2003.
    doi:10.1063/1.1591083

    8. Cunningham, J., C. Wood, A. G. Davies, I. Hunter, H. E. Linfield, and E. H. Beere, "Terahertz frequency range band-stop filters," Appl. Phys. Lett., Vol. 86, 213503, 2005.
    doi:10.1063/1.1938255

    9. Lu, M., W. Li, and E. R. Brown, "Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures," Opt. Lett., Vol. 36, 1071-1073, 2011.
    doi:10.1364/OL.36.001071

    10. Lee, E. S., S.-G. Lee, C.-S. Kee, and T.-I. Jeon, "Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides," Opt. Exp., Vol. 19, 14852-14859, 2011.
    doi:10.1364/OE.19.014852

    11. Perruisseau-Carrier, J. and A. Alvarez-Melcon, "Graphene-based plasmonic tunable low-pass filters in the terahertz band," IEEE Trans. Nanotechnol., Vol. 13, 1145-1153, 2014.

    12. Yao, Y., X. Cheng, S.-W. Qu, J. Yu, and X. Chen, "Graphene-metal based tunable band-pass filters in the terahertz band," IET Microw. Antennas Propag., Vol. 10, 1570-1575, 2016.
    doi:10.1049/iet-map.2016.0335

    13. Pozar, D. M., Microwave Engineering, 3rd Ed., Publishing House of Electronics Industry, 2006.

    14. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
    doi:10.1063/1.2891452