Vol. 71

Latest Volume
All Volumes
All Issues
2017-11-20

A Compact Meandered CPW-Fed Antenna with Asymmetrical Ground Plane for 5.8 GHz RFID Applications with Multiple Split Ring Resonator

By Ramasamy Pandeeswari
Progress In Electromagnetics Research Letters, Vol. 71, 125-131, 2017
doi:10.2528/PIERL17101704

Abstract

In this paper, a Multiple Split Ring Resonator (MSRR) based coplanar waveguide (CPW) fed antenna for 5.8 GHz RFID application is presented. The antenna has a compact size of 15 x 21 x 0.8 mm3. The proposed antenna is designed, fabricated and tested. The simulated results are discussed and in good compliance with the measured results. Split Ring Resonator (SRR) characteristics are also studied. The proposed antenna shows good performance at the measured resonance frequency of 5.75 GHz.

Citation


Ramasamy Pandeeswari, "A Compact Meandered CPW-Fed Antenna with Asymmetrical Ground Plane for 5.8 GHz RFID Applications with Multiple Split Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 71, 125-131, 2017.
doi:10.2528/PIERL17101704
http://test.jpier.org/PIERL/pier.php?paper=17101704

References


    1. Pandeeswari, R., S. Raghavan, and K. Ramesh, "A compact split ring resonator loaded antenna," PIERS Proceedings, 37-40, Moscow, Russia, August 19-23, 2012.

    2. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
    doi:10.1002/mop.28602

    3. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
    doi:10.1002/mop.28835

    4. Pandeeswari, R. and S. Raghavan, "A CPW-Fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, Wiley Interscience, 2015.

    5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
    doi:10.1002/0471754323

    6. Pandeeswari, R., S. Raghavan, A. Krishnan, and P. Jain, "Artificial neural network model for MNG-metamaterial spiral resonator," PIERS Proceedings, 29-33, Moscow, Russia, August 19-23, 2012.

    7. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005.
    doi:10.1109/TMTT.2005.845211

    8. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, 2258-2267, 2007.
    doi:10.1109/TAP.2007.901950

    9. Sousa Neto, M. P., H. C. C. Fernandes, and C. G. Moura, "Design of a ultrawide band monopole antenna using split ring resonator for notching frequencies," Microwave and Optical Technology Letters, Vol. 56, 1471-1473, 2014.
    doi:10.1002/mop.28363

    10. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feedline for WLAN/WiMAX applications," Electron Lett., Vol. 47, 685-686, 2011.
    doi:10.1049/el.2011.1232

    11. Si, L.-M., H.-J. Sun, Y. Yuan, and X. Lv, "CPW-fed compact planar UWB antenna with circular disc and spiral split ring resonators," PIERS Proceedings, 502-505, Beijing, China, March 23-27, 2009.

    12. Pandeeswari, R. and S. Raghavan, "Meandered CPW-fed hexagonal split ring resonator monopole antenna for 5.8 GHz RFID applications," Microwave and Optical Technology Letters, Vol. 57, 681-684, Wiley Interscience, USA, 2015.

    13. Pendry, J. B., A. J. Holden, D. J. Robbin, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-1084, 1999.
    doi:10.1109/22.798002