A passband filter where the central frequency can be one of seven selectable frequencies is presented. Its operation region ranges from 325 to 455 MHz, and each bandwidth is about 20 MHz. The filter is based on a highly miniaturized ring resonator with a size reduction from about 77% to 83% compared to a conventional closed ring. The reconfiguration of its resonant frequency is implemented by shifting a short location, thus changing its effective inductance. This is opposed to the conventional capacitance change of other reconfigurable filters. Simulated and experimental results are in good agreement. Reflections are below -10 dB at central bandpass frequencies for all selectable bands.
2. Yuceer, M., "Reconfigurable narrow microwave band-pass filter," Int. J. Circuit Theory and Appl., Vol. 43, No. 1, 125-132, 2015.
doi:10.1002/cta.1937
3. Kim, J. M., S. Lee, C. H. Baek, Y. Kwon, and Y. K. Kim, "Monolithic reconfigurable bandpass filter using single-pole double-throw RF MEMS switches," IEICE Electron. Express, Vol. 5, No. 13, 483-489, 2008.
doi:10.1587/elex.5.483
4. Chan, K. Y. and R. Ramer, "Millimeter-wave reconfigurable bandpass filters," Int. Jour. of Microw. and Wireless Tech., Vol. 7, No. 6, 671-678, 2014.
doi:10.1017/S1759078714001214
5. Contreras, A., J. Casals-Terre, L. Pradell, and F. Giacomozzi, "A Ku-band RF-MEMS frequencyreconfigurable multimodal bandpass filter," Int. Jour. of Microw. and Wireless Tech., Vol. 6, No. 3-4, 277-285, 2014.
doi:10.1017/S1759078714000567
6. Xiang, Q. Y., Q. Feng, X. G. Huang, and D. H. Jia, "A novel microstrip LC reconfigurable bandpass filter," Progress In Electromagnetic Letters, Vol. 36, 171-179, 2013.
doi:10.2528/PIERL12111202
7. Tai, C. F. and H. K. Chiou, "A compact band selection filter in 0.18-μm CMOS technology," IEICE Electron. Express, Vol. 9, No. 14, 1166-1171, 2012.
doi:10.1587/elex.9.1166
8. Sanchez-Renedo, M., R. Gomez-Gracia, J. I. Alonso, and C. Briso-Rodriguez, "Tunable combline filter with continuous control of center frequency and bandwidth," IEEE T. on Microwave Theory and Techniques, Vol. 53, No. 1, 191-199, 2005.
doi:10.1109/TMTT.2004.839309
9. Vryonides, P., S. Nikolaou, S. Kim, and M. M. Tentzeris, "Reconfigurable dual-mode band-pass filter with switchable bandwidth using PIN diodes," Int. Jour. of Microw. and Wireless Tech., Vol. 7, No. 6, 655-660, 2015.
doi:10.1017/S1759078714000932
10. Huang, X. and Y. Zhou, Design of a 5-state reconfigurable filter based on the structure of SIR, 11th International Symposium on Antennas, Propagation and EM Theory, 750-752, Guilin, China, 2016.
11. Motoi, K., N. Oshima, M. Kitsunesuka, and K. Kunihiro, "A 0.4-3-GHz nested bandpass filter annd a 1.1–1.7-GHz balun bandpass filter using tunable band-switching technique," Int. Jour. of Microw. and Wireless Tech., Vol. 9, No. 6, 1279-1291, 2017.
doi:10.1017/S1759078717000447
12. Saghati, A. P., J. S. Batra, J. Kameoka, and K. Entesari, "A miniaturized microfluidically reconfigurable coplanar waveguide bandpass filter with maximum power handling of 10 Watts," IEEE T. on Microwave Theory and Techniques, Vol. 63, No. 8, 2515-2525, 2015.
doi:10.1109/TMTT.2015.2446477
13. Sonnet EM Full-Wave Simulator, V Free 15.53-Lite, Sonnet Software Inc., NY, USA.
14. Hsieh, L. H. and K. Chang, "Equivalent lumped elements G, L, C and unloaded Q’s of closeand open-loop ring resonators," IEEE T. on Microwave Theory and Techniques, Vol. 50, No. 2, 453-460, 2002.
doi:10.1109/22.982223
15. Matthaei, G. L., L. Young, and E. M. T. Jones, Microstrip Filters, Impedance-matching Networks, and Coupling Structures, Reprint of 1st Edition, Artech, New Jersey, USA, 1985.
16. Hong, J. S. and J. S. Lancaster, Microstrip Filters for RF/Microwave Applications, 1st Ed., Wiley, New York, USA, 2001.
doi:10.1002/0471221619
17. Zong, B. F., G. M. Wang, H. Y. Zeng, and Y. W. Wang, "Compact and high performance dualband bandpass filter using resonator-embedded scheme for WLANs," Radioengineering, Vol. 21, No. 4, 1050-1053, 2012.