Vol. 72

Latest Volume
All Volumes
All Issues
2018-01-16

Reconfigurable Microstrip Antennas Conformal to Cylindrical Surface

By Prasanna Kumar Singh and Jasmine Saini
Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018
doi:10.2528/PIERL17111002

Abstract

Conformability helps microstrip antenna to mount on any geometry platform and can also be used for multiple frequency systems without any complexity. The designing of a frequency reconfigurable antenna conformal to cylindrical surface using the combination of metamaterial (MTM) and substrate integrated waveguide (SIW) is proposed. The single and dual antenna models resonate at various frequencies of C-band by means of changing the cylindrical curvature. The results also show a considerable improvement in bandwidth and gain for dual antennas as compared to the single antenna. The antenna parameters are simulated on HFSS tool, and validation process is done by experimental setup.

Citation


Prasanna Kumar Singh and Jasmine Saini, "Reconfigurable Microstrip Antennas Conformal to Cylindrical Surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
doi:10.2528/PIERL17111002
http://test.jpier.org/PIERL/pier.php?paper=17111002

References


    1. Wong, K.-L., Design of Nonplanar Microstrip Antennas and Transmission Lines, 16-30, John Wiley & Sons Inc., New York, 1999.
    doi:10.1002/0471200662.ch2

    2. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, 155-258, John Wiley & Sons Inc., New Jersey, 2006.
    doi:10.1002/047178012X.ch6

    3. Tam, W. Y., A. K. Y. Lai, and K. M. Luk, "Mutual coupling between cylindrical rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 897-899, 1995.
    doi:10.1109/8.402215

    4. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
    doi:10.2528/PIERM17022012

    5. Singh, P. K. and J. Saini, "Performance analysis of superstrate loaded cylindrically conformal microstrip antenna on the varying curvature for WiMAX applications," International Journal of Microwave and Optical Technology, Vol. 11, No. 6, 406-412, 2016.

    6. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap, using the electric surface current model," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
    doi:10.2528/PIER06080304

    7. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
    doi:10.2528/PIERM09071301

    8. Mahmoud, S. F., "A new miniaturized annular ring patch resonator partially loaded by a metamaterial ring with negative permeability and permittivity," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 19-22, Apr., 2004.
    doi:10.1109/LAWP.2004.825092

    9. Wang, H., D.-G. Fang, B. Zhang, and W.-Q. Che, "Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 640-647, 2010.
    doi:10.1109/TAP.2009.2039298

    10. Caytan, O., S. Lemey, S. Agneessens, and H. Rogier, "SIW antennas as hybrid energy harvesting and power management platforms for the internet of things," International Journal of Microwave and Wireless Technologies, 1-9, 2016.

    11. Luo, G. Q., Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1698-1704, 2012.
    doi:10.1109/TAP.2012.2186226

    12. Luo, G. Q., T. Y. Wang, and X. H. Zhang, "Review of low profile substrate integrated waveguide cavity backed antennas," International Journal of Antennas and Propagation, 1-7, 2013.

    13. Jim’enez-Fern’andez, M. J., R. Torres-S’anchez, and P. Otero, "Cavity-backed slot array antenna in substrate-integrated waveguide technology," Microwave and Optical Technology Letters, Vol. 53, No. 9, 2105-2108, 2011.
    doi:10.1002/mop.26165

    14. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    15. Capolino, F., Handbook of Artificial Materials: Applications of Metamaterials, Vol. 2, 18.1-18.14, Taylor and Francis, CRC Press, 2009.
    doi:10.1201/9781420054248

    16. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide components," IEEE Transactions on Microwave Theory and Tech., Vol. 51, 593-596, 2003.
    doi:10.1109/TMTT.2002.807820

    17. Meagher, C. J. and S. K. Sharma, "A wideband aperture-coupled microstrip patch antenna employing spaced dielectric cover for enhanced gain performance," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 314-318, 1982.

    18. Yang, H. and Y. N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 8, 860-863, 1987.
    doi:10.1109/TAP.1987.1144186

    19. Djerafi, T., A. Doghri, and K. Wu, "Substrate integrated waveguide antennas," Handbook of Antenna Technologies, Springer Science + Business Media Singapore, 1-60, 2015.

    20. Cui, T., D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, Berlin, Germany, 2009.

    21. Engheta, N. and R. W. Ziolkowski, Metamaterial Physics & Engineering Explorations, Wiley-IEEE Press, 2006.