An approach to separate metallic and dielectric losses in ferroelectric capacitors in all range of tuning under control dc voltages (Udc) is considered. The procedure is based on measurements of the dc voltage dependencies of microwave losses (tanδt(Udc)) and capacitance (C(Udc)) for a set of capacitors with similar layout but with different nominals. Linear extrapolation of tanδt(C) dependencies at different control dc voltages to C = 0 allows to evaluate the dielectric losses tanδd as a function of the control dc voltage. The procedure of separation was performed for a set of sandwich metal/(Ba0:5Sr0:5)TiO3/metal capacitors. Capacitors parameters were measured at a frequency of 2 GHz in a range of electric field strength in ferroelectric of E = (0 - 30) V/μm. The intrinsic commutation quality factor of BSTO lm itself was estimated by the method proposed.
2. Meyers, C. J. G., C. R. Freeze, S. Stemmer, and R. A. York, "(Ba,Sr)TiO3 tunable capacitors with RF commutation quality factors exceeding 6000," App. Phys. Lett., Vol. 109, No. 11, 112902, 2016.
doi:10.1063/1.4961626
3. Maune, H., M. Jost, A. Wiens, C. Weickhmann, R. Reese, M. Nikfalazar, C. Schuster, T. Franke, W. Hu, M. Nickel, D. Kienemund, A. E. Prasetiadi, and R. Jakoby, "Tunable microwave component technologies for satcom-platforms," Frequenz, Vol. 71, No. 3-4, 129-142, 2017.
doi:10.1515/freq-2016-0207
3. Rammal, M., L. Huitema, A. Crunteanu, D. Passerieux, D. Cros, T. Monediere, V. Madrangeas, P. Dutheil, C. Champeaux, F. Dumas-Bouchiat, P. Marchet, L. Nedelcu, L. Trupina, G. Banciu, and M. Cernea, BST thin film capacitors integrated within a frequency tunable antenna, 2016 International Workshop on Antenna Technology (iWAT), 44-47, 2016.
5. Tagantsev, A. K., V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, "Ferroelectric materials for microwave tunable applications," J. Electroceram., Vol. 11, No. 1-2, 5-66, 2003.
doi:10.1023/B:JECR.0000015661.81386.e6
6. Houzet, G., L. Burgnies, G. Velu, J.-C. Carru, and D. Lippens, "Dispersion and loss of ferroelectric Ba0.5Sr0.5TiO3 thin films up to 110 GHz," App. Phys. Lett., Vol. 93, No. 5, 053507, 2008.
doi:10.1063/1.2969469
7. Ayguavives, F., Z. Jin, A. Tombak, J. P. Maria, A., Mortazawi, A. I. Kingon, G. T. Stauf, C. Ragaglia, J. F. Roeder, and M. Brand, "Contribution of dielectric and metallic losses in RF/microwave tunable varactors using (Ba,Sr)TiO3 thin films," Integr. Ferroelectr., Vol. 39, No. 1-4, 393-402, 2001.
doi:10.1080/10584580108011963
8. Kozyrev, A. B., D. M. Kosmin, I. V. Kotelnikov, A. K. Mikhailov, and V. N. Osadchy, "A method and device for measuring the capacitance and Q-factor of microwave varactors and variconds," Meas. Techn., Vol. 55, No. 7, 834-838, 2012.
doi:10.1007/s11018-012-0047-3
9. Certificate No. 18-09 of 12-03-2009 by Siberian State Research Institute of Metrology (SNIIM).
10. Vendik, I. B., O. G. Vendik, and E. L. Kollberg, "Commutation quality factor of two-state switchable devices," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 5, 802-808, 2000.
doi:10.1109/22.841874
11. McDaniel, M. D., T. Q. Ngo, S. Hu, A. Posadas, A. A. Demkov, and J. G. Ekerdt, "Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors," Appl. Phys. Rev., Vol. 2, 041301, 2015.
doi:10.1063/1.4934574