Vol. 74

Latest Volume
All Volumes
All Issues
2018-03-20

An Equivalent Method of Position Error Caused by the Array Antenna Deformation

By Xiutiao Ye, Wen-Tao Li, and Wenhao Du
Progress In Electromagnetics Research Letters, Vol. 74, 53-60, 2018
doi:10.2528/PIERL18010810

Abstract

The deformation of antenna array due to external factors results in a significant degradation in the performance of the array direction of arrival (DOA) estimation. To solve this problem, an equivalent method based on the estimation of signal parameters by rotational invariance technique (ESPRIT) in single signal source for the array position errors is proposed in this paper. This method is mainly for the low-order deformation of the array and is based on the equivalent value of the position error. The DOA estimation of ESPRIT algorithm for single signal source was corrected. The simulation results show that the position error equivalent method can effectively equalize the position error caused by the vibration deformation of the array. When the equivalent position error is known, the orientation of the single signal source can be effectively corrected.

Citation


Xiutiao Ye, Wen-Tao Li, and Wenhao Du, "An Equivalent Method of Position Error Caused by the Array Antenna Deformation," Progress In Electromagnetics Research Letters, Vol. 74, 53-60, 2018.
doi:10.2528/PIERL18010810
http://test.jpier.org/PIERL/pier.php?paper=18010810

References


    1. Arnold, E. J., Y. B. Yan, R. D. Hale, F. Rodriguez-Morales, P. Gogineni, J. Li, and M. Ewing, "Effects of vibration on a wing-mounted ice-sounding antenna array," IEEE Antennas Propag. Mag., Vol. 56, No. 6, 41-52, 2014.
    doi:10.1109/MAP.2014.7011017

    2. Du, Q. and P. Du, "Computation of fluctuating wind pressure and wind loads on phased-array antennas," IEEE Antennas Propag. Mag., Vol. 54, No. 1, 66-75, 2012.
    doi:10.1109/MAP.2012.6202513

    3. Wang, C., M. Kang, W.Wang, B. Duan, L. Lin, and L. Ping, "On the performance of array antennas with mechanical distortion errors considering element numbers," Int. J. Electron., Vol. 104, No. 3, 462-484, 2017.
    doi:10.1080/00207217.2016.1218064

    4. Friedlander, B. and A. J. Weiss, "Eigenstructure methods for direction finding with sensor gain and phase uncertainties," Circuits Syst. Signal Process., Vol. 9, 272-300, 1990.

    5. Wijnholds, S. J. and A. J. V. D. Veen, "Multisource self-calibration for sensor arrays," IEEE Trans. Signal Process., Vol. 57, No. 9, 3512-3522, 2009.
    doi:10.1109/TSP.2009.2022894

    6. Weiss, A. J. and B. Friedlander, "Array shape calibration using sources in unknown locations — A maximum likelihood approach," IEEE Trans. Acoust. Speech Signal Process., Vol. 37, No. 12, 1958-1966, 1989.
    doi:10.1109/29.45542

    7. Flanagan, B. P. and K. L. Bell, "Array self-calibration with large sensor position errors," IEEE Trans. Signal Process., Vol. 81, No. 10, 2201-2214, Oct. 2001.

    8. Lanagan, B. P. and K. L. Bell, "Array self-calibration with large sensor position errors," Signal Process., Vol. 81, No. 11, 2201-2214, 2001.
    doi:10.1016/S0165-1684(01)00121-9

    9. Ng, B. C. and A. Nehorai, "Active array sensor localization," Signal Process., Vol. 44, No. 3, 309-327, 1995.
    doi:10.1016/0165-1684(95)00032-9

    10. Ng, B. C. and A. Nehorai, "Active array sensor location calibration," IEEE Proc. ICASSP, Vol. 4, 21-24, 1993.
    doi:10.1109/ICASSP.1993.319584

    11. Park, H. Y., C. Lee, D. H. Youn, and H. G. Kang, "Generalization of the subspace-based array shape estimations," IEEE J. Ocean. Eng., Vol. 29, No. 3, 847-856, 2004.
    doi:10.1109/JOE.2004.833373

    12. Roy, R., A. Paulraj, and T. Kailath, "ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust., Speech. Signal Processing, Vol. 34, 1340-1342, Oct. 1986.

    13. Qian, C., L. Huang, and H. C. So, "Computationally efficient ESPRIT algorithm for direction-ofarrival estimation based on Nystr¨om method," Signal Process., Vol. 94, No. 1, 74-80, 2014.
    doi:10.1016/j.sigpro.2013.05.007

    14. Kim, S., D. Oh, and J. Lee, "Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1710-1713, 2015.
    doi:10.1109/LAWP.2015.2420579

    15. Cui, K., W. Wu, J. Huang, X. Chen, and N. Yuan, "2-D DOA estimation of LFM signals for UCA based on time-frequency multiple invariance ESPRIT," Progress In Electromagnetics Research M, Vol. 53, 153-165, 2017.
    doi:10.2528/PIERM16112208

    16. Li, J., M. Jin, Y. Zheng, G. Liao, and L. Lv, "Transmit and receive array gain-phase error estimation in bistatic MIMO radar," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 25-32, 2015.

    17. Schippers, H., J. H. van Tongeren, and G. Vos, "Development of smart antennas on vibrating structures of aerospace platforms of conformal antennas on aircraft structures," Proc. NATO AVT Specialists Meeting Paper Nr, Vol. 20, 2-5, Oct. 2006.