Design and experimental optimization of a 5 cm-diameter electron cyclotron resonance (ECR) Ion Thruster was carried out. The experimental results with the shorten discharge chamber demonstrated that its maximum efficiency, specific impulse, and thrust were 38%, 4300 s, 2.3 mN with the power of 130 W, respectively. The beam current was increased with the increment of the propellant flow rate and screen grid voltage. In addition, the performance of the thruster was associated with the distance of the antenna and screen grid. However, the optimum distance depended on the input microwave power which was about 20 W.
2. Ushio, K., Y. Toyoda, Y. Naoji, T. Morita, and H. Nakashima, "Development of novel miniature microwave discharge thruster," IEPC, Vol. 245, 2015.
3. Yuichi, N., T. Daiki, K. Hiroyuki, and K. Komurasaki, "Performance Dependence on microwave frequency and discharge chamber geometry of the water ion thruster," IEPC, Vol. 454, 2017.
4. Nakamura, K. and K. Hiroyuki, "Three-Dimensional particle simulations of discharge characteristics for a miniature microwave discharge ion thruster using water as propellant," IEPC, Vol. 241, 2017.
5. Jin, Y. Z., J. Yang, and M. J. Tang, "Diagnosing the fine structure of electron energy, within the ECRIT ion source," Plasma Sci. Technol., Vol. 18, No. 7, 744-750, 2016.
doi:10.1088/1009-0630/18/7/08
6. Correyero, S. and E. Ahedo, "Measurement of anisotropic plasma properties along the magnetic nozzle expansion of an electron cyclotron resonance thruster," IEPC, Vol. 347, 2017.
7. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008.
8. Koizumi, H. and H. Kuninaka, "Low power micro ion engine using microwave discharge," AIAA, Vol. 4531, 2008.
9. Izumi, T., H. Koizumi, and H. Kuninaka, "Performance of miniature microwave discharge ion thruster for drag-free control," AIAA, Vol. 4022, 2012.
10. Nishiyama, I., T. Tsukizaki, and H. Kuninaka, "Experimental study for enhancement thrust force of the ECR ion thruster μ10," AIAA, Vol. 3913, 2014.
11. Yamamoto, N., K. Tomita, N. Yamasaki, T. Tsuru, T. Ezaki, Y. Kotani, K. Uchino, and H. Nakashima, "Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique," Plasma Sources Sci. Technol., Vol. 19, 045009, 2010.
doi:10.1088/0963-0252/19/4/045009
12. Lubey, D., S. Bilen, M. Micci, and P. Taunay, "Design of the miniature microwave-frequency ion thruster," IEPC, Vol. 164, 2011.
13. Satori, S., A. Nagata, H. Okamoto, T. Sugiki, and Y. Aoki, "New electrostatic thruster for small satellite application," AIAA, Vol. 3275, 2000.
14. Yang, J., C. Wang, Y. Jin, L. Li, D. Tao, and Y. Yang, "Underlying strain-induced growth of the self-assembled Ge quantum-dots prepared by ion beam sputtering deposition," Acta Phys. Sin., Vol. 61, 016804, 2012.
15. Sun, A., G. Mao, J. Yang, G. Xia, and M. Chen, "Particle simulation of three-grid ECR ion thruster optics and erosion prediction," Plasma Sci. Technol., Vol. 12, No. 2, 240-247, 2010.
doi:10.1088/1009-0630/12/2/21
16. Zhang, H., P. Wang, and J. Qiu, "Study on miniaturized electron cyclotron resonant microwave ion thruster," Acta Astronautica (in Chinese), Vol. 28, 138-142, 2007.
17. Ke, Y., X. Sun, X. Chen, L. Tian, T. Zhang, and M. Zheng, "Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster," Plasma Sci. Technol., Vol. 19, 095503, 2017.
doi:10.1088/2058-6272/aa6d4c
18. Boswell, R. and F. Chen, "Helicons-the early years," IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1229-1244, 1997.
doi:10.1109/27.650898
19. Takao, Y., K. Ono, K. Takahashi, and Y. Setsuhara, "Microwave-sustained miniature plasmas for an ultra small thruster," Thin Solid Films, 506-592, 2006.