Vol. 78

Latest Volume
All Volumes
All Issues
2018-08-13

Effectiveness of Modulation Formats to Nonlinear Effects in Optical Fiber Transmission Systems Under 160 GB/S Data Rate

By Haider J. Abd, Alaaldin H. Jaber, and Abdulrasul A. Al-Haider
Progress In Electromagnetics Research Letters, Vol. 78, 9-16, 2018
doi:10.2528/PIERL18050901

Abstract

Four wave mixing (FWM) in optical fiber is unwanted effect to an optical transmission system, which can severely limit the wavelength division multiplexing (WDM) and lower the transmission efficiency. In this work, the robustness of normal Non-Return-to-Zero (NRZ), Return-to-Zero (RZ) and Modified-Duobinary-Return-Zero modulation (MDRZ) to FWM have been evaluated. Furthermore, the system performance is evaluated with the effect of fiber length tuning and applying 160 Gb/s data rate. The findings show that the RZ modulation offers a lower FWM power of -44 dBm at 700 km fiber length than -30 and -38 dBm of NRZ and MDRZ respectively at the same fiber length. In terms of system performance at the first channel and 700 km distance, the minimum BER is observed in normal RZ modulation, equal to 1.2×10-23. It is also noticeable that if NRZ and MDRZ modulations are applied, the system performance will be quickly changed and get worse, where the BEARs are increased to 1.3×10-6 and 1.3×10-8 consecutively at same channel and parameters.

Citation


Haider J. Abd, Alaaldin H. Jaber, and Abdulrasul A. Al-Haider, "Effectiveness of Modulation Formats to Nonlinear Effects in Optical Fiber Transmission Systems Under 160 GB/S Data Rate," Progress In Electromagnetics Research Letters, Vol. 78, 9-16, 2018.
doi:10.2528/PIERL18050901
http://test.jpier.org/PIERL/pier.php?paper=18050901

References


    1. Hoshida, T., O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, "Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems," IEEE J. Lightwave Technol., Vol. 20, 1989, 2002.
    doi:10.1109/JLT.2002.806761

    2. Hayee, M. I. and A. E. Willner, "NRZ versus RZ in 10-40-Gb/s dispersion managed WDM transmission systems," IEEE Photonics Technol. Lett., Vol. 11, 991-993, 1999.
    doi:10.1109/68.775323

    3. Hodzik, A., B. Konrad, and K. Petemann, "Alternative modulation formatsin N 40 Gb/s WDM standard fiber RZ-transmission systems," IEEE J. Lightwave Technol., Vol. 20, 598, 2002.
    doi:10.1109/50.996579

    4. Shahiand, S. N. and S. Kumar, "Reduction of nonlinear impairments in fiber transmission system using fiber and/or transmitter diversity," Opt. Commun., Vol. 285, 3553-3558, 2012.
    doi:10.1016/j.optcom.2012.04.019

    5. Abed, H. J., N. M. Din, M. H. Al-Mansoori, H. A. Fadhil, and F. Abdullah, "Recent four-wave mixing suppression methods," Optik, Vol. 124, 2214-2218, 2013.
    doi:10.1016/j.ijleo.2012.06.082

    6. Abd, H. J., M. H. Al-Mansoori, N. M. Din, F. Abdullah, and H. A. Fadhil, "Priority-based parameter optimization strategy for reducing the effects of four-wave mixing on WDM system," Optik, Vol. 125, 25, 2014.
    doi:10.1016/j.ijleo.2013.06.002

    7. Abd, H., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Four-wave mixing crosstalk suppression based on the pairing combinations of differently linear-polarized optical signals," Sci. World J., Vol. 2014, Article ID 243795, 1, 2014.

    8. Abd, H. J., M. H. Al-Mansoori, N. M. Din, F. Abdullah, and H. A. Fadhil, "Four-wave mixing reduction technique based on smart filter approach," International Journal of Electronics, Vol. 102, No. 6, 1056-1070, 2015.
    doi:10.1080/00207217.2014.963890

    9. Abed, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Comparison among different types of advanced modulation formats under four wave mixing effects," Ukrainian Journal of Physics, Vol. 58, No. 4, 326-334, 2013.
    doi:10.15407/ujpe58.04.0326

    10. Abd, H. J. and M. S. Almahanna, "Suppression of nonlinear effect for high data transmission rate with a WDM using the optimization properties," Ukrainian J. of Physics, Vol. 62, 583-588, 2017.
    doi:10.15407/ujpe62.07.0583

    11. Salim, N., H. J. Abd, A. N. Aljamal, and A. H. Jaber, "Four-wave mixing suppression method based on odd-even channels arrangement strategy," Progress In Electromagnetics Research, Vol. 66, 163-172, 2018.

    12. Abd, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, and H. A. Fadhil, "Mitigation of FWM crosstalk in WDM system using polarization interleaving technique," 2013 IEEE 4th International Conference on Photonics (ICP), 117-119, 2013.
    doi:10.1109/ICP.2013.6687086

    13. Abed, H. J., N. M. Din, M. H. Al-Mansoori, F. Abdullah, N. Salim, and H. A. Fadhil, "A new FWM reduction technique based on damping selective wavelengths," Ukrainian Journal of Physics, Vol. 58, No. 10, 956-961, 2013.
    doi:10.15407/ujpe58.10.0956

    14. Jabber, A. H., N. M. Din, M. H. Al-Mansoori, F. Abdullah, H. A. Fadhl, and N. Salim, "Influence of four wave mixing on modulation format performance under 100 Gb/s data rate," 2012 IEEE Student Conference on Research and Development (SCOReD), 129-133, 2012.
    doi:10.1109/SCOReD.2012.6518625

    15. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, New York, 2001.

    16. Agrawal, G. P., Applications of Nonlinear Fiber Optics, Academic Press, New York, 2001.

    17. Hayee, M. I. and A. E. Willner, "NRZ versus RZ in 10-40-Gb/s dispersion managed WDM transmission systems," IEEE Photonics Technol. Lett., Vol. 11, 991-993, 1999.
    doi:10.1109/68.775323

    18. Bosco, G., A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, "On the use of NRZ, RZ, and CSRZ modulation at 40Gb/s with narrow DWDM channel spacing," J. Lightwave Technol., Vol. 20, No. 9, 1694, 2002.
    doi:10.1109/JLT.2002.806309

    19. Hodzik, A., B. Konrad, and K. Petemann, "Alternative modulation formats in N 40 Gb/s WDM standard fiber RZ-transmission systems," IEEE J. Lightwave Technol., Vol. 20, 598, 2002.
    doi:10.1109/50.996579

    20. Dahan, D. and G. Eisenstein, "Numerical comparison between distributed and discrete amplification in a point-to-point 40-Gb/s 40-WDM-based transmission system with three different modulation formats," J. Lightwave Technol., Vol. 20, 379, 2002.
    doi:10.1109/50.988986

    21. Kaler, R. S., A. K. Sharma, and T. S. Kamal, "Simulation results for DWDM systems with ultra-high capacity," Int. J. Fiber Integrated Opt., Vol. 21, No. 5, 2002.

    22. Winzer, P. J. and R.-J. Essiambre, "Advanced optical modulation formats," Proceedings of the IEEE, Vol. 94, No. 5, 952-985, May 2006.
    doi:10.1109/JPROC.2006.873438

    23. Singh, S. and R. S. Kaler, "Simulation of DWDM signals using optimum span scheme with cascaded optimized semiconductor optical amplifiers," Optik --- Int. J. Light Electron. Opt., Vol. 118, 74-82, 2007.
    doi:10.1016/j.ijleo.2006.02.002

    24. Inoue, K., K. Nakanishi, K. Oda, and H. Toba, "Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions," J. Lightwave Technol., Vol. 12, 1423, 1994.
    doi:10.1109/50.317531

    25. Singh, S. P., S. Kar, and V. K. Jain, "Performance of all-optical WDM network in presence of four-wave mixing," Optical Amplifier Noise, and Wavelength Converter Noise, Vol. 26, 79-97, 2007.

    26. Ema, K., M. Kuwata-Gonokami, and F. Shimizu, "All optical subTbits/s serial to parallel conversion using excitonic giant nonlinearity," Appl. Phys. Lett., Vol. 59, 2799, 1991.
    doi:10.1063/1.105864