Vol. 78

Latest Volume
All Volumes
All Issues
2018-08-31

A 28-GHz Antenna for 5G MIMO Applications

By Zamir Wani, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul
Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018
doi:10.2528/PIERL18070303

Abstract

In this letter a four-port multi-input-multi-output (MIMO) antenna for 5G applications is proposed. This antenna is compact with a size of 11.3 mm×31 mm excluding feed lines. The radiation patterns of the antenna show pattern diversity in the azimuthal plane, and each antenna element has an end-fire gain about 10 dBi by employing an array of metamaterial unit cells. The isolation between the antenna elements with edge to edge separation <λ0/5.5 at 28 GHz is enhanced by trimming the corners of the rectangular high refractive index metamaterial region along with a ground stub between antennas. The proposed antenna is fabricated, and each antenna element has return loss, Snn<-10 dB with isolation, Snm>21 dB in the frequency range 26 GHz to 31 GHz, which makes this antenna potential candidate for MIMO application at 28 GHz band enabling 5G cellular communications.

Citation


Zamir Wani, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "A 28-GHz Antenna for 5G MIMO Applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.
doi:10.2528/PIERL18070303
http://test.jpier.org/PIERL/pier.php?paper=18070303

References


    1. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proc. IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011.
    doi:10.1109/JPROC.2011.2143650

    2. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems ," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6721-6727, Dec. 2017.
    doi:10.1109/TAP.2017.2700891

    3. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," Antennas Propag. IET Microw., Vol. 11, No. 2, 287-293, 2017.
    doi:10.1049/iet-map.2016.0457

    4. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Trans. Antennas Propag., Vol. PP, No. 99, 1-1, 2017.

    5. Hsu, Y. W., T. C. Huang, H. S. Lin, and Y. C. Lin, "Dual-polarized quasi Yagi-Uda antennas with endfire radiation for millimeter-wave MIMO terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6282-6289, Dec. 2017.
    doi:10.1109/TAP.2017.2734238

    6. Sharma, A., A. Sarkar, M. Adhikary, A. Biswas, and M. J. Akhtar, "SIWfed MIMO DRA for future 5G applications," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1763-1764, 2017.
    doi:10.1109/APUSNCURSINRSM.2017.8072924

    7. Ikram, M., M. S. Sharawi, A. Shamim, and A. Sebak, "A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1468-1476, Jun. 2018.
    doi:10.1002/mop.31180

    8. Parchin, N. O., M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2016.

    9. Selvaraju, R., M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dahri, "Complementary split ring resonator for isolation enhancement in 5G communication antenna array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
    doi:10.2528/PIERC18011019

    10. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
    doi:10.1109/LAWP.2017.2761903

    11. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2763-2766, 2017.
    doi:10.1109/LAWP.2017.2745050

    12. Hussain, M. T., M. S. Sharawi, S. Podilchack, and Y. M. M. Antar, "Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

    13. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 823-828, Feb. 2015.
    doi:10.1109/TAP.2014.2381229

    14. Bait-Suwailam, M. M., M. S. Boybay, O. M. Ramahi, and , "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
    doi:10.1109/TAP.2010.2052560

    15. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
    doi:10.2528/PIER12090610

    16. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3672-3676, Nov. 2009.
    doi:10.1109/TAP.2009.2026666

    17. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on kramers kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
    doi:10.1109/TMTT.2010.2065310

    18. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Gain enhancement of millimeter wave antenna with metamaterial loading," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, 2017.

    19. Wani, Z. and D. K. Vishwakarma, "An ultrawideband antenna for portable MIMO terminals," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 51-57, Jan. 2016.
    doi:10.1002/mop.29498

    20. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 162-170, Apr. 2017.
    doi:10.1109/MAP.2017.2658346