Vol. 79

Latest Volume
All Volumes
All Issues
2018-09-30

Modified CMRC LPF Using Novel Fractal Patches

By Mohammed Ezzat Yassin, Hesham Abd Elhady Mohamed, Esmat A. F. Abdallah, and Hadia El-Hennawy
Progress In Electromagnetics Research Letters, Vol. 79, 25-31, 2018
doi:10.2528/PIERL18071605

Abstract

A modified compact microstrip resonance cell (CMRC) low pass filter (LPF) with ultrawide and deep stopband using novel fractal patches is presented. The proposed filter has low insertion loss in the passband, good selectivity, ultrawide and deep stopband. The experimental results show a 3-dB cut-off frequency of 2.85 GHz and out-of-band rejection up to 67 GHz with 181.5% relative stopband bandwidth.

Citation


Mohammed Ezzat Yassin, Hesham Abd Elhady Mohamed, Esmat A. F. Abdallah, and Hadia El-Hennawy, "Modified CMRC LPF Using Novel Fractal Patches," Progress In Electromagnetics Research Letters, Vol. 79, 25-31, 2018.
doi:10.2528/PIERL18071605
http://test.jpier.org/PIERL/pier.php?paper=18071605

References


    1. Khan, R., A. Abdullah Al-Hadi, and P. J. Soh, "Efficiency of millimeter wave mobile terminal antennas with the influence of users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
    doi:10.2528/PIER18012409

    2. Lischer, S., M. Heiss, M. Landwehr, and W.-Joachim Fischer, "A 24 GHz RFID system-on-a-chip with on-chip antenna, compatible to ISO 18000-6C/EPC CIG2," IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 1-4, Tel Aviv, Israel, Nov. 2-4, 2015.

    3. Attaran, A., R. Rashidzadeh, and R. Muscedere, "Rotman lens combined with wide bandwidth antenna array for 60 GHz RFID applications," International Journal of Microwave and Wireless Technologies, 1-7, Jul. 2015.

    4. Xie, Y., J. Chen, D. Liu, C. Lv, K. Liu, and J. Miao, "Development and calibration of a K-band ground-based hyperspectral microwave radiometer for water vapor measurements," Progress In Electromagnetics Research, Vol. 140, 415-438, 2013.
    doi:10.2528/PIER13050704

    5. Kurniawan, F., J. T. Sri Sumantyo, K. Ito, H. Kuze, and S. Gao, "Patch antenna using rectangular centre slot and circular ground slot for circularly polarized synthetic aperture radar (CP-SAR) application," Progress In Electromagnetics Research, Vol. 160, 51-61, 2017.
    doi:10.2528/PIER17082903

    6. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
    doi:10.2528/PIER11092906

    7. Wang, D. and C. Hou Chan, "Multiband antenna for WiFi and WiGig communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 309-312, 2015.
    doi:10.1109/LAWP.2015.2443013

    8. Kim, W.-G., N.-W. Moon, J. Kang, and Y.-H. Kim, "Loss measuring of large aperture quasi-optics for W-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
    doi:10.2528/PIER12010502

    9. Mener, S., R. Gillard, and L. Roy, "A dual-band dual-circular-polarization antenna for Ka-band satellite communications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 274-277, 2016.
    doi:10.1109/LAWP.2016.2572261

    10. Trinh-Van, S., H. B. Kim, G. Kwon, and K. C. Hwang, "Circularly polarized spidron fractal slot antenna arrays for broadband satellite communications in Ku-band," Progress In Electromagnetics Research, Vol. 137, 203-218, 2013.
    doi:10.2528/PIER13010401

    11. De Sanctis, M., et al., "Waveform design solutions for EHF broadband satellite communications," IEEE Communications Magazine, Vol. 53, No. 3, 18-23, 2015.
    doi:10.1109/MCOM.2015.7060477

    12. Attaran, A., R. Rashidzadeh, and A. Kouki, "60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5172-5180, Dec. 2016.
    doi:10.1109/TAP.2016.2618479

    13. Attaran, A. and S. Chowdhury, "Fabrication of a 77 GHz Rotman lens on a high resistivity silicon wafer using lift-off process," International Journal of Antennas and Propagation, 1-9, article ID: 471935, 2014.

    14. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG Cells," IEEE Microwave and Guided Wave Letters, Vol. 10, 403-405, 2000.

    15. Li, K., M. Zhao, Y. Fan, Z. B. Zhu, and W.-Z. Cui, "Compact lowpass filter with wide stopband using novel double-folded SCMRC structure with parallel open-ended stub," Progress In Electromagnetics Research, Vol. 36, 77-86, 2013.
    doi:10.2528/PIERL12100910

    16. Raphika, P. M., P. Abdulla, and P. M. Jasmine, "Compact lowpass filter with a sharp roll-off using patch resonators," Microwave and Optical Technology Letters, Vol. 56, 2534-2536, 2014.
    doi:10.1002/mop.28644

    17. Li, Q., Y. Zhang, and Y. Fan, "Compact ultra-wide stopband low pass filter using multimode resonators," Electronics Letters, Vol. 51, 1084-1085, 2015.
    doi:10.1049/el.2015.1054

    18. Tang, W., X. B. Yang, and L. H. Zuo, "A compact lowpass filter with ultra-wide stopband using novel resonance cell," Microwave and Millimeter Wave Circuits and System Technology (MMWCST), 1-3, Chengdu, China, Apr. 19-20, 2012.

    19. Li, Q., Y. Zhang, D. Li, and K. Xu, "Compact low-pass filters with deep and ultra-wide stopband using tri- and quad-mode resonators," IET Microwaves, Antennas & Propagation, Vol. 11, 743-748, 2017.
    doi:10.1049/iet-map.2016.0466

    20. Chang, Y., W. Feng, and W. Che, "Dual-band bandpass filters with high isolation using coupled lines," International Journal of Electronics, Vol. 103, 372-383, 2015.