Vol. 79

Latest Volume
All Volumes
All Issues
2018-11-15

Investigation of a Silicon-Based High Integration Reconfigurable Dipole

By Han Su, Huiyong Hu, Heming Zhang, and Yuanhao Miao
Progress In Electromagnetics Research Letters, Vol. 79, 135-141, 2018
doi:10.2528/PIERL18071701

Abstract

In this paper, an on-chip high integration reconfigurable dipole with band stop filters was demonstrated. This antenna was fabricated on a high resistivity silicon wafer, and several optimized band stop filters were introduced into antenna system to replace conventional inductors and capacitors. The measured results show that the stopband of this filter can meet the requirements of the designed dipole. This method will greatly improve the integration of antenna system. On the basis of structural optimization, the proposed reconfigurable dipole realized two resonant frequencies at 1.33 GHz and 1.65 GHz, and the radiation patterns also showed satisfactory results.

Citation


Han Su, Huiyong Hu, Heming Zhang, and Yuanhao Miao, "Investigation of a Silicon-Based High Integration Reconfigurable Dipole," Progress In Electromagnetics Research Letters, Vol. 79, 135-141, 2018.
doi:10.2528/PIERL18071701
http://test.jpier.org/PIERL/pier.php?paper=18071701

References


    1. Han, L., C. Wang, X. Chen, and W. Zhang, "Compact frequency-reconfigurable slot antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1795-1798, 2016.
    doi:10.1109/LAWP.2016.2536778

    2. Valagiannopoulos, C. A., "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.
    doi:10.2528/PIER11062603

    3. Row, J. S. and J. F. Tsai, "Frequency reconfigurable microstrip patch antennas with circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1112-1115, 2014.
    doi:10.1109/LAWP.2014.2330293

    4. Rajagopalan, H., J. M. Kovitz, and Y. Rahmat-Samii, "MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1056-1064, Feb. 2014.
    doi:10.1109/TAP.2013.2292531

    5. Genovesi, S., A. D. Candia, and A.Monorchio, "Compact and low profile frequency agile antenna for multistandard wireless communication systems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1019-1026, Mar. 2014.
    doi:10.1109/TAP.2013.2272731

    6. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.
    doi:10.2528/PIERC08042906

    7. Borhani, M., P. Rezaei, and A. Valizade, "Design of a reconfigurable miniaturized microstrip antenna for switchable multiband systems," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 822-825, 2016.
    doi:10.1109/LAWP.2015.2476363

    8. Wang, Y., Y. Liu, H. Du, C. Liu, Q. Xue, X. Gao, S. Li, and Y. Lu, "A frequency reconfigurable microstrip antenna based on (Ba, Sr) TiO3 substrate," IEEE Transaction on Antennas and Propagation, Vol. 63, No. 2, 770-775, Jan. 2015.
    doi:10.1109/TAP.2014.2378275

    9. Chang, T.-N. and J.-H. Jiang, "Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method," Progress In Electromagnetics Research, Vol. 96, 127-139, 2009.
    doi:10.2528/PIER09081010

    10. Fikioris, G. and C. A. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
    doi:10.2528/PIER05031701

    11. Soltani, S., P. Lotfi, and R. D. Murch, "A port and frequency reconfigurable MIMO slot antenna for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1209-1217, Apr. 2016.
    doi:10.1109/TAP.2016.2522470

    12. Jusoh, M., T. Aboufoul, T. Sabapathy, A. Alomainy, and M. Kamarudin, "Pattern-reconfigurable microstrip patch antenna with multidirectional beam for WiMAX application," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 860-863, 2014.
    doi:10.1109/LAWP.2014.2320818

    13. Titz, D., F. Ferrero, and C. Luxey, "Development of a millimeter-wave measurement setup and dedicated techniques to characterize the matching and radiation performance of probe-fed antennas," IEEE Antennas Propag. Mag., Vol. 54, No. 4, 188-203, Aug. 2012.
    doi:10.1109/MAP.2012.6309179

    14. Liu, J., Q. Xue, H. Wong, H. W. Lai, and Y. Long, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 11-18, Jan. 2013.
    doi:10.1109/TAP.2012.2214996

    15. Thi Phuong Thao, H., V. Thanh Luan, and V. V. Yem, "Design of compact frequency reconfigurable planar invert-F antenna for green wireless communications," IET Communications, Vol. 10, No. 18, 2567-2574, Dec. 2016.
    doi:10.1049/iet-com.2016.0267

    16. Geng, J.-P., J. Li, R.-H. Jin, S. Ye, X. Liang, and M. Li, "The development of curved microstrip antenna with defected ground structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.
    doi:10.2528/PIER09081905

    17. Iyer, P. P., N. A. Butakov, and J. A. Schuller, "Reconfigurable semiconductor phased-array metasurfaces," ACS Photonics, Vol. 2, No. 8, 1077-1084, 2015.
    doi:10.1021/acsphotonics.5b00132