Vol. 80

Latest Volume
All Volumes
All Issues
2018-12-13

SRR Based Compact Wideband Metamaterial Inspired Antenna for WiMAX (2.5-2.7)/WLAN (2.4-2.48)/Bluetooth (2.4-2.48)/LTE (2.3-2.4) Applications

By Manish Sharma, Naveen Mishra, and Raghvendra Kumar Chaudhary
Progress In Electromagnetics Research Letters, Vol. 80, 109-116, 2018
doi:10.2528/PIERL18100802

Abstract

An SRR based compact wideband metamaterial inspired antenna for WiMAX (2.5-2.7)/WLAN (2.4-2.48)/Bluetooth (2.4-2.48)/LTE (2.3-2.4) applications has been fabricated and investigated in this paper. The proposed antenna structure has been designed with the concept of epsilon negative transmission line. It comprises a patch on the top of the substrate and SRR and ground connected through strip on the bottom of the substrate. The proposed antenna offers overall electrical dimensions of 0.29λ0×0.19λ0×0.015λ0 where λ0 represents the free space wavelength at the frequency of 2.88 GHz. Additionally, the designed antenna also provides simulated and measured -10 dB fractional bandwidths of 40.13% and 40.55% around the center frequencies of 2.89 and 2.88 GHz, respectively. The average simulated and measured total gains of the proposed antenna throughout the working band are 1.92 dB and 1.75 dB. Further the average simulated radiation efficiency throughout the entire -10 dB bandwidth of the deigned antenna is 96.2%.

Citation


Manish Sharma, Naveen Mishra, and Raghvendra Kumar Chaudhary, "SRR Based Compact Wideband Metamaterial Inspired Antenna for WiMAX (2.5-2.7)/WLAN (2.4-2.48)/Bluetooth (2.4-2.48)/LTE (2.3-2.4) Applications," Progress In Electromagnetics Research Letters, Vol. 80, 109-116, 2018.
doi:10.2528/PIERL18100802
http://test.jpier.org/PIERL/pier.php?paper=18100802

References


    1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, Hoboken, NJ, 2005.
    doi:10.1002/0471754323

    2. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, 71-75, 2016.
    doi:10.1002/mop.29494

    3. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propagation Letters, Vol. 9, 36-39, 2010.
    doi:10.1109/LAWP.2010.2041628

    4. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on via-less single layer," IEEE Trans. Antennas Propagation, Vol. 59, 363-370, 2011.
    doi:10.1109/TAP.2010.2096191

    5. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Compact dual-band antenna using an anisotropic metamaterial," 36th European Microwave Conference, 1044-1047, Manchester, UK, 2006.

    6. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propagation, Vol. 55, 868-876, 2007.
    doi:10.1109/TAP.2007.891845

    7. Gupta, A., S. K. Sharma, and R. K. Chaudhary, "A compact dual-mode metamaterial-inspired antenna using rectangular type CSRR," Progress In Electromagnetics Research C, Vol. 9, 36-39, 2015.

    8. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 318-321, 2012.
    doi:10.1109/TAP.2011.2167907

    9. Kim, J., C. S. Cho, and J. W. Lee, "CPW bandstop filter using slot type SRRs," Electronics Lett., Vol. 41, 2005.

    10. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microwave. Antennas Propagations, Vol. 8, 1097-1104, 2014.
    doi:10.1049/iet-map.2013.0698

    11. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
    doi:10.1109/ACCESS.2017.2675439

    12. Kumari, K., N. Mishra, and R. K. Chaudhary, "An ultra-thin compact polarization insensitive dual band absorber based on metamaterial for X-band applications," Microwave and Optical Technology Letters, Vol. 59, 2664-2669, 2017.
    doi:10.1002/mop.30797

    13. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas Propagation, Vol. 60, 1143-1147, 2012.
    doi:10.1109/TAP.2011.2173114

    14. Chi, P.-L. and Y.-S. Shih, "Compact and bandwidth-enhanced zeroth order resonant antenna," IEEE Antennas Wireless Propagation Letters, Vol. 14, 285-288, 2015.
    doi:10.1109/LAWP.2014.2363087

    15. Sharma, S. K. and R. K. Chaudhary, "A compact zeroth-order resonating wideband antenna with dual-band characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1670-1672, 2015.
    doi:10.1109/LAWP.2015.2417889

    16. Zhu, J. and G. V. Eleftheriades, "A compact transmission line metamaterial antenna with extended bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 295-298, 2009.
    doi:10.1109/LAWP.2009.2036870

    17. Kenari, M. A., M. N. Moghadasi, B. S. Virdee, A. Andújar, and J. Anguera, "Compact antenna based on a composite right/left-handed transmission line," Microwave and Optical Technology Letters, Vol. 57, 1785-1788, 2015.
    doi:10.1002/mop.29191

    18. Kenari, M. A., B. S. Virdee, A. Ali, and E. Limiti, "A novel monofilar-Archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar systems," Microwave and Optical Technology Letters, Vol. 60, 2055-2060, 2018.
    doi:10.1002/mop.31300

    19. Kenari, M. A., M. N. Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications," AEU-International Journal of Electronics and Communications, Vol. 70, 1645-1650, 2016.
    doi:10.1016/j.aeue.2016.10.003