A compact dual-band metamaterial-inspired antenna is designed and developed in this paper. This design is carried out by loading a radial stub (acts as virtual ground plane) onto a circular microstrip fed patch antenna. Proposed antenna resonates at two frequencies fc1 = 2.70 GHz and fc2 = 7.34 GHz with -10 dB simulated impedance bandwidth of 6.6% (2.62-2.80 GHz) and 14.57% (6.57-7.65 GHz) respectively. First band is due to the metamaterial transmission line while second band is due to the coupling between microstrip feed and ground plane. Electrical size of the proposed antenna is 0.27λ0 × 0.27λ0 × 0.014λ00, where λ0 is the free space wavelength at f0 = 2.70 GHz. In addition, this antenna provides antenna gain of 1.49 dB at 2.70 GHz and 3.75 dB at 7.34 GHz in the boresight direction. This antenna also provides dipolar type pattern in the xz plane whereas omnidirectional pattern in the yz plane with cross polarization level of -32 dB in the lower band while cross polarization level of -23 dB is maintained even in higher band. Proposed antenna's compactness, excellent radiation characteristics and ease of fabrication make it feasible to be utilized for Worldwide interoperability for microwave access (WiMAX) and satellite TV applications.
2. Al-Bawri, S. S., M. F. Jamlos, P. J. Soh, S. A. A. S. Junid, M. A. Jamlos, and A. Narbudowicz, "Multiband slot-loaded dipole antenna for WLAN and LTE-A applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 63-68, 2018.
doi:10.1049/iet-map.2017.0008
3. Zhang, T., R. L. Li, G. Jin, G. Wei, and M. M. Tentzeris, "A novel multiband planar antenna for GSM/UMTS/LTE/ZIGBEE/RFID mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4209-4214, 2011.
doi:10.1109/TAP.2011.2164201
4. Anguera, J., C. Picher, A. Andujar, C. Puente, and S. Kahng, "Compact multiband antenna system for smartphone platforms," 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 2013.
5. Mehdipour, A., T. A. Denidni, and A.-R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 555-562, 2014.
doi:10.1109/TAP.2013.2290791
6. Sharma, S. K. and R. K. Chaudhary, "A compact zeroth-order resonating wideband antenna with dual-band characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1670-1672, 2015.
doi:10.1109/LAWP.2015.2417889
7. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, 2014.
doi:10.1109/TAP.2014.2308516
8. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231
9. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., USA, ISBN 0-471-66985-7, 2006.
10. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Asia-Pacific Microwave Conference, Vol. 3, 1588-1592, Seoul, Korea, 2003.
11. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845
12. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zerothorder resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 363-372, 2011.
doi:10.1109/TAP.2010.2096191
13. Niu, B.-J., Q.-Y. Feng, and P.-L. Shu, "Epsilon negative zeroth- and first order resonant antennas with extended bandwidth and high efficiency," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5878-5884, 2013.
doi:10.1109/TAP.2013.2281357
14. Amani, N., M. Kamyab, A. Jafargholi, A. Hosseinbeig, and J. S. Meiguni, "Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures," Electronics Letters, Vol. 50, No. 12, 847-848, 2014.
doi:10.1049/el.2014.0875
15. Huang, H., Y. Liu, S. Zhang, and S. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969
16. Gupta, A. and R. K. Chaudhary, "A compact short-ended zor antenna with gain enhancement using EBG loading," Microwave and Optical Technology Letters (MOTL), Vol. 58, 1194-1197, 2016.
doi:10.1002/mop.29761
17. Li, D., Z. Szabo, X. Qing, E. P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 6018-6023, 2012.
doi:10.1109/TAP.2012.2213231
18. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114