This paper describes a printed wideband low profile omnidirectional dual-polarized antenna, which is a combination of vertical polarization (VP) and horizontal polarization (HP) elements. The VP element printed on a double-layered disk-shaped substrate is a modified monopole with loadings. The introduction of the material of the dielectric substrate can reduce the profile height in the polarized direction to 0.08λL (the wavelength at the lowest frequency). And loading metallic cylindrical block and shorting-posts in the dielectric substrate to improve the bandwidth are realized by using metal-vias. The HP element consists of a printed 8-element circular connected Vivaldi antenna array, and each element contains a director in the slot for the improvement of radiation pattern's out-of-roundness. Both the simulated and measured results indicate that operating bands of 2.2-4.52 GHz for VP and 2.4-3.8 GHz for HP. This proposed antenna has good isolation and omnidirectional patterns with the out-of-roundness less than 2.5 dB in the azimuth plane for both VP and HP, and it can be applied in mobile communication systems.
2. Kim, S. C., S. H. Lee, and Y. S. Kim, "Multi-band monopole antenna using meander structure for handheld terminals," Electronics Letters, Vol. 44, No. 5, 331-332, 2008.
doi:10.1049/el:20080004
3. Yang, N., K. W. Leung, K. Lu, and N. Wu, "Omnidirectional circularly polarized dielectric resonator antenna with logarithmic spiral slots in the ground," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 796-800, 2016.
doi:10.1109/TAP.2015.2506735
4. Svezhentsev, A. Y., V. Volski, and S. Yan, "Omnidirectional wideband E-shaped cylindrical patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 839-844, 2017.
doi:10.1109/TAP.2016.2634280
5. Bhadoria, B. and S. Kumar, "A novel omnidirectional triangular patch antenna array using dolph chebyshev current distribution for C-band applications," Progress In Electromagnetics Research M, Vol. 71, 75-84, 2018.
doi:10.2528/PIERM18051402
6. Li, Y., Z. Zhang, J. Zheng, and Z. Feng, "Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4037-4045, 2012.
doi:10.1109/TAP.2012.2207072
7. Li, Y., Z. Zhang, Z. Feng, and M. F. Iskander, "Design of omnidirectional dual-polarized antenna in slender and low-profile column," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2323-2326, 2014.
doi:10.1109/TAP.2014.2303817
8. Deng, C., P. Li, and W. Cao, "A high-isolation dual-polarization patch antenna with omnidirectional radiation patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 11, No. 6, 1273-1276, 2013.
9. Fan, Y., X. Liu, B. Liu, and R. L. Li, "A broadband dual-polarized omnidirectional antenna based on orthogonal dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 15, No. 2, 1257-1260, 2016.
doi:10.1109/LAWP.2015.2504373
10. Yu, L., J. Song, Y. Gao, K. He, and F. Gao, "Low-profile dual-polarized omnidirectional antenna for broadband indoor distributed antenna system," Progress In Electromagnetics Research Letters, Vol. 67, 39-45, 2017.
doi:10.2528/PIERL17021704
11. Jolani, F., Y. Yu, and Z. Chen, "A novel broadband omnidirectional dual polarized MIMO antenna for 4G LTE applications," IEEE Wireless Symposium, 1-4, 2014.
12. Bai, X., M. Su, Z. D. Gao, and Y. A. Liu, "Broadband dual-polarized omnidirectional antenna based on magnetic dipoles," IEICE Electronics Express, Vol. 15, No. 5, 1-8, 2018.
doi:10.1587/elex.15.20171149
13. Yu, Y., H. Zhang, and Z. Chen, "A broadband dual-polarized omnidirectional MIMO antenna for 4G LTE applications," Progress In Electromagnetics Research Letters, Vol. 57, 91-96, 2015.
doi:10.2528/PIERL15083102
14. Quan, X. L. and R. L. Li, "A broadband dual-polarized omnidirectional antenna for base stations," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 943-947, 2013.
doi:10.1109/TAP.2012.2223450
15. Zhou, L., Y.-C. Jiao, Z.-B. Weng, Y. Qi, and T. Ni, "Wideband dual-polarized omnidirectional antenna with high isolation for indoor DAS applications," Progress In Electromagnetics Research C, Vol. 61, 105-113, 2016.
doi:10.2528/PIERC15120102
16. Wu, J., S. Yang, Y. Chen, S. Qu, and Z. Nie, "A low profile dual-polarized wideband omnidirectional antenna based on AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 368-374, 2017.
doi:10.1109/TAP.2016.2631147
17. Wen, H., Y. Qi, Z. Weng, F. Li, and J. Fan, "A multiband dual-polarized omnidirectional antenna for 2G/3G/LTE applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 180-183, 2017.
doi:10.1109/LAWP.2017.2778761
18. Lin, S., G. J. Liu, Y. W. Zhang, H. Zong, S. Qiu, S. C. Lan, and A. Denisov, "A low-profile vertical polarized omnidirectional radiated and broadband printed antenna," IEEE International Symposium on Antennas Propagation, 1801-1802, Jul. 2016.
19. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2005.