Since passive millimeter wave synthetic aperture interferometric radiometer (SAIR) has the advantages of high spatial-resolution and large field of view, it is an attractive tool for wide area surveillance. Among the SAIRs, the Rotating Scanning SAIR (RS-SAIR) with linear sparse array is a popular system with low redundancy and high reliability. According to the detection mechanism of RS-SAIR, we extend RS-SAIR to deal with higher-order moving target detection (HMTD) for the first time in this paper. In the proposed HMTD method, the 2D time-projection image is constituted by the 1D projection images measured by RS-SAIR firstly. Then, the projection trajectory of moving target can be extracted from the time-projection image. Finally, the positions and motion parameters are estimated by fitting the moving target's trajectory. Simulation results indicate that the position and motion parameters of higher-order moving target can be well estimated with high real time and accuracy by the proposed HMTD method.
2. Wang, L. B., D. W. Wang, J. J. Li, J. Xu, C. Xie, and L. Wang, "Ground moving target detection and imaging using a virtual multichannel scheme in HRWS mode," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 5028-5043, Sep. 2016.
doi:10.1109/TGRS.2016.2544846
3. Deng, L. Z. and H. Zhu, "Moving point target detection based on clutter suppression using spatiotemporal local increment coding," Electronics Letters, Vol. 51, 626-627, Apr. 16, 2015.
4. Minaeian, S., J. Liu, and Y. J. Son, "Effective and efficient detection of moving targets from a UAV’s camera," IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 2, 497-506, 2018.
doi:10.1109/TITS.2017.2782790
5. Wan, M. J., et al., "Total variation regularization term-based low-rank and sparse matrix representation model for infrared moving target tracking," Remote Sensing, Vol. 10, No. 4, 510, Apr. 2018.
doi:10.3390/rs10040510
6. Nanzer, J. A., "Millimeter-wave interferometric angular velocity detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 4128-4136, Dec. 2010.
7. Xia, B., J. Xu, Y. N. Peng, and X. G. Xia, "Doppler ambiguity resolving for SAR moving targets via linear migration correction," Electronics Letters, Vol. 47, 464-465, 2011.
doi:10.1049/el.2010.3615
8. Waqas, M., S. Kidera, and T. Kirimoto, "PCA-based detection algorithm of moving target buried in clutter in doppler frequency domain," IEICE Transactions on Communications, Vol. E94b, 3190-3194, Nov. 2011.
9. Yang, J., C. Liu, and Y. F. Wang, "Detection and imaging of ground moving targets with real SAR data," Ieee Transactions on Geoscience and Remote Sensing, Vol. 53, 920-932, Feb. 2015.
doi:10.1109/TGRS.2014.2330456
10. Li, J., Y. Huang, G. S. Liao, and J. W. Xu, "Moving target detection via efficient ATI-GoDec approach for multichannel SAR system," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 1320-1324, Sep. 2016.
doi:10.1109/LGRS.2016.2584083
11. Zhang, Y. L., W. Miao, Z. H. Lin, H. Gao, and S. C. Shi, "Millimeter-wave InSAR image reconstruction approach by total variation regularized matrix completion," Remote Sensing, Vol. 10, No. 7, 1053, Jul. 2018.
doi:10.3390/rs10071053
12. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, "A study on millimeter-wave imaging of concealed objects: Application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.
doi:10.2528/PIER12050210
13. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of the IEEE, Vol. 95, 1683-1690, Aug. 2007.
doi:10.1109/JPROC.2007.898832
14. Martin-Neira, M., et al., "Microwave interferometric radiometry in remote sensing: An invited historical review," Radio Science, Vol. 49, 415-449, Jun. 2014.
doi:10.1002/2013RS005230
15. Torres, F., A. B. Tanner, S. T. Brown, and B. H. Lambrigsten, "Analysis of array distortion in a microwave interferometric radiometer: Application to the GeoSTAR project," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, 1958-1966, Jul. 2007.
doi:10.1109/TGRS.2007.898093
16. Rautiainen, K., J. Kainulainen, T. Auer, J. Pihlflyckt, J. Kettunen, and M. T. Hallikainen, "Helsinki university of technology L-band airborne synthetic aperture radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 717-726, Mar. 2008.
doi:10.1109/TGRS.2007.914805
17. Wu, J., C. Zhang, H. Liu, and J. Y. Yan, "Performance analysis of circular antenna array for microwave interferometric radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 3261-3271, Jun. 2017.
doi:10.1109/TGRS.2017.2667042
18. Lucotte, B. M., B. Grafulla-Gonzalez, and A. R. Harvey, "Array rotation aperture synthesis for short-range imaging at millimeter wavelengths," Radio Science, Vol. 44, n/a-n/a, 2009.
19. Tanner, A., T. Gaier, W. Imbriale, P. Kangaslahti, B. Lambrigtsen, and B. Lim, "A dual-gain design for the geostationary synthetic thinned array radiometer," IEEE Geoscience and Remote Sensing Letters, Vol. 11, 1340-1344, Aug. 2014.
doi:10.1109/LGRS.2013.2293318
20. Zhou, X., H. J. Sun, J. W. He, and X. Lu, "NUFFT-based iterative reconstruction algorithm for synthetic aperture imaging radiometers," IEEE Geoscience and Remote Sensing Letters, Vol. 6, 273-276, Apr. 2009.
doi:10.1109/LGRS.2008.2012123
21. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Transactions on Signal Processing, Vol. 51, 560-574, Feb. 2003.
doi:10.1109/TSP.2002.807005
22. Camps, A., M. Vall-Ilossera, I. Corbella, F. Torres, and N. Duffo, "Angular and radiometric resolution of Y-shaped nonuniform synthetic aperture radiometers for earth observation," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 793-795, Oct. 2008.
23. Feng, L., et al., "The gridding method for image reconstruction of nonuniform aperture synthesis radiometers," IEEE Geoscience and Remote Sensing Letters, Vol. 12, 274-278, Feb. 2015.
doi:10.1109/LGRS.2014.2335413
24. Li, S., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Progress In Electromagnetics Research, Vol. 135, 583-599, 2013.
doi:10.2528/PIER12110603
25. Zhang, C., J. Wu, H. Liu, and J. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, 2224-2231, 2011.
doi:10.1007/s11431-011-4403-3
26. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702
27. Butora, R., M. Martin-Neira, and A.-L. Rivada-Antich, "Fringe-washing function calibration in aperture synthesis microwave radiometry," Radio Science, Vol. 38, 15/1-15/15, 2003.
28. Tanner, A. B., B. Lambrigsten, T. Gaier, and F. Torres, Near Field Characterization of the GeoSTAR Demonstrator, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, 2006.
29. Camps, A., A. Cardama, and D. Infantes, "Synthesis of large low-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 49, 1881-1883, Dec. 2001.
doi:10.1109/8.982474