In this paper, a 60-GHz broadband 8-by-1 gap-coupled microstrip antenna array is presented and experimentally investigated. The proposed antenna array has been implemented using a Miniature Hybrid Microwave Integrated Circuits (MHMIC) fabrication process on a thin ceramic substrate with εr = 9.9, and h = 127 μm. For a comprehensive characterization and to accurately evaluate losses, as well as manufacturing tolerances, the proposed antenna array structure has been implemented using two different feeding techniques. The first one adopts a grounded broadband via-hole less transition from coplanar to microstrip line (GCPW-to-MS), while the second one has involved a broadband waveguide (WR12) to microstrip transition, based on a ridged waveguide concept. The obtained results have demonstrated that the proposed gap-coupled array configuration provides an improved bandwidth (4.56%) and an enhanced gain (11.8 dBi), while maintaining a lower side-lobe level (13.4 dB). These outstanding performances make the proposed WR12 gap-coupled array structure a potential candidate for the future emerging 60-GHz short-range point-to-point wireless communication systems.
2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, MA, USA, 2003.
3. Hannachi, C. and S. O. Tatu, "Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology," IET Microwaves, Antennas & Propagation, Vol. 11, No. 1, 106-112, Jan. 2017.
doi:10.1049/iet-map.2015.0720
4. Fan, S. T., Y. Z. Yin, B. Lee, W. Hu, and X. Yang, "Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1230-1233, 2012.
doi:10.1109/LAWP.2012.2224311
5. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Trans. Veh. Technol.,, Vol. 65, No. 3, 1130-1136, Mar. 2016.
doi:10.1109/TVT.2015.2409886
6. Sallam, M. O., S. M. Kandil, V. Volski, G. A. E. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMAX systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, Aug. 2017.
doi:10.1109/TAP.2017.2710227
7. Aanandan, C. K., P. Mohanan, and K. G. Nair, "Broad-band gap coupled microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1586, 1990.
doi:10.1109/8.59771
8. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," IEE Proc. --- Microw. Antennas Propag., Vol. 127, No. 4, 231-234, Aug. 1980.
9. Kumar, G. and K. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," ” IEEE Transactions on Antennas and Propagation, Vol. 32, No. 12, 1375-1379, Dec. 1984.
doi:10.1109/TAP.1984.1143264
10. Deshmukh, A. A., S. Nagarbowdi, P. A. Kadam, and A. A. Odhekar, "Broadband gap-coupled isosceles triangular microstrip antennas," 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI), 67-72, Pune, 2017.
doi:10.1109/ETIICT.2017.7977012
11. Nirate, S., R. M. Yadahalli, K. K. Usha, R. M. Vani, and P. V. Hunagund, "Wideband gap-coupled suspended rectangular microstrip antenna," 2008 International Conference on Recent Advances in Microwave Theory and Applications, 833-835, Jaipur, 2008.
doi:10.1109/AMTA.2008.4763126
12. Bhalekar, P., L. K. Ragha, and R. Gupta, "Wideband gap coupled microstrip antenna using RIS and RIS cavity resonator," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1291-1295, Bangalore, 2017.
13. Rathod, S. M., R. N. Awale, K. P. Ray, and A. D. Chaudhari, "A compact gap coupled half-hexagonal microstrip antenna with improved bandwidth," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, 2017.
14. Ponchak, G. E. and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition," IEEE MTT-S Int. Dig., 491-492, 1990.
15. Hannachi, C., T. Djerafi, and S. O. Tatu, "Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 552-554, July 2018.
doi:10.1109/LMWC.2018.2835475
16. Nasr, M. A. and A. A. Kishk, "Wideband inline coaxial to ridge waveguide transition with tuning capability for ridge gap waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2757-2766, 2018.
doi:10.1109/TMTT.2018.2815690
17. Corporation, A., Ansoft High Frequency Structure Simulation (HFSS), Version 13, 2010.
18. Hannachi, C., D. Hammou, T. Djerafi, Z. Ouardirhi, and S. O. Tatu, "Complete characterization of novel MHMICs for V-band communication systems," Journal of Electrical and Computer Engineering, 1-7, Article ID 686708, 2013.
19. Hannachi, C. and S. O. Tatu, "A compact V-band planar gap-coupled antenna array: Improved design and analysis," IEEE Access, Vol. 5, 8763-8770, 2017.
doi:10.1109/ACCESS.2017.2705484