In severe multipath channels, depolarization of wireless signals has been shown to be a three dimensional effect. This work herein presents and applies a 3D Stokes vector framework for such depolarization. Empirical data are used to illustrate the capabilities of this framework (specifically, polarization purity indices and direction of propagation) to describe depolarization behavior for three different wireless channels.
2. Andrews, M. R., et al., "Tripling the capacity of wireless communications using electromagnetic polarization," Nature, Vol. 409, No. 6818, 316-318, 2001.
doi:10.1038/35053015
3. Ellis, J. and A. Dogariu, "On the degree of polarization of random electromagnetic fields," Optics Communications, Vol. 253, No. 4-6, 257-265, 2005.
doi:10.1016/j.optcom.2005.05.020
4. Dennis, M. R., "A three-dimensional degree of polarization based on Rayleigh scattering," JOSA A, Vol. 24, No. 7, 2065-2069, 2007.
doi:10.1364/JOSAA.24.002065
5. Dao, M.-T., V.-A. Nguyen, Y.-T. Im, S.-O. Park, and G. Yoon, "3D polarized channel modeling and performance comparison of MIMO antenna configurations with different polarizations," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2672-2682, 2011.
doi:10.1109/TAP.2011.2152319
6. Pratt, T. G., H. Tapse, B. Walkenhorst, and G. Acosta-Marum, "A modified XPC characterization for polarimetric channels," IEEE Transactions on Vehicular Technology, Vol. 60, No. 7, 2904-2913, 2011.
doi:10.1109/TVT.2011.2159035
7. Migliaccio, M., J. J. Gil, A. Sorrentino, F. Nunziata, and G. Ferrara, "The polarization purity of the electromagnetic field in a reverberating chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 694-700, 2016.
doi:10.1109/TEMC.2016.2528503
8. Carozzi, T., R. Karlsson, and J. Bergman, "Parameters characterizing electromagnetic wave polarization," Physical Review E, Vol. 61, No. 2, 2024, 2000.
doi:10.1103/PhysRevE.61.2024
9. Bosyk, G., G. Bellomo, and A. Luis, "Polarization monotones of two-dimensional and threedimensional random electromagnetic fields," Physical Review A, Vol. 97, No. 2, 023804, 2018.
doi:10.1103/PhysRevA.97.023804
10. Brosseau, C. and R. Barakat, "Dimensionality of the coherency matrix in polarization optics," Optics Communications, Vol. 91, No. 5-6, 408-415, 1992.
doi:10.1016/0030-4018(92)90368-2
11. Setälä, T., A. Shevchenko, M. Kaivola, and A. T. Friberg, "Degree of polarization for optical near fields," Physical Review E, Vol. 66, No. 1, 016615, 2002.
doi:10.1103/PhysRevE.66.016615
12. Sabry, R., "A novel field scattering formulation for polarimetric synthetic aperture radar: 3D scattering and stokes vectors," Progress In Electromagnetics Research M, Vol. 27, 129-150, 2012.
doi:10.2528/PIERM12061910
13. Gil, J. J. and I. San José, "3D polarimetric purity," Optics Communications, Vol. 283, No. 22, 4430-4434, 2010.
doi:10.1016/j.optcom.2010.04.090
14. Ramirez, R. A., M. Golmohamadi, J. Frolik, and T. M. Weller, "3D printed on-package tripolar antennas for mitigating harsh channel conditions," 2017 IEEE Radio and Wireless Symposium (RWS), 62-64, IEEE, 2017.
doi:10.1109/RWS.2017.7885946
15. Konanur, A., K. Gosalia, S. Krishnamurthy, B. Hughes, and G. Lazzi, "Increasing wireless channel capacity through MIMO systems employing co-located antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1837-1844, June 2005.
doi:10.1109/TMTT.2005.848105