Vol. 83

Latest Volume
All Volumes
All Issues
2019-03-28

New TLM Formulation for Modeling Epstein Plasma

By Yasser Ekdiha, Khalid Mounirh, Mohsine Khalladi, and Soufiane El Adraoui
Progress In Electromagnetics Research Letters, Vol. 83, 59-64, 2019
doi:10.2528/PIERL19020705

Abstract

In plasma physics, the interaction with electromagnetic waves is related to the electrons contained in the plasma. So to analyze this interaction, the behaviour of electrons contained must be understood and modeled. In this paper, a new TLM formulation for dispersive media called the exponential time differencing (ETD) transmission line matrix (TLM) technique is introduced to model the interaction with dispersive media. To verify the high accuracy and efficiency of this method, the reflection and transmission coefficients of electromagnetic wave through a non-magnetized collisional plasma slab are computed and compared to the analytical solution. As the electron density in plasma can be distributed as Epstein formula, and its distribution is a function of the grads coefficient σ, and the effect of this parameter and the electron collision frequency νc on the reflection coefficient is calculated. The results show that with different values of σ and νc, the reflection coefficient is affected and can be reduced.

Citation


Yasser Ekdiha, Khalid Mounirh, Mohsine Khalladi, and Soufiane El Adraoui, "New TLM Formulation for Modeling Epstein Plasma," Progress In Electromagnetics Research Letters, Vol. 83, 59-64, 2019.
doi:10.2528/PIERL19020705
http://test.jpier.org/PIERL/pier.php?paper=19020705

References


    1. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 4, 370-377, 1987.
    doi:10.1109/TMTT.1987.1133658

    2. Hoefer, J. R., "The transmission line matrix method, theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 10, 882-893, 1985.
    doi:10.1109/TMTT.1985.1133146

    3. Adraoui, E. S., K. mounirh, A. Zugari, M. Iben Yaich, and M. Khalladi, "Novel CDRC-TLM algorithm for the analysis of magnetized plasma," Optik --- International Journal for Light and Electron Optics, Vol. 125, No. 1, 276-279, 2014.
    doi:10.1016/j.ijleo.2013.06.049

    4. Adraoui, E. S., A. Zugari, M. Bassouh, MI. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," I. J. Adv. Sci. Technol., Vol. 6, No. 1, 26-32, 2013.

    5. Yaich, I. M., M. Khalladi, I. Zekik, and J. A Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2002.
    doi:10.1109/LMWC.2002.802027

    6. Abrini, R., M. Iben Yaich, and M. Khalladi, "Efficient modeling of isotropic cold plasma media using JE-TLM method," IEICE Electron., Vol. 4, No. 15, 492-49, 2007.
    doi:10.1587/elex.4.492

    7. Mounirh, K., S. El Adraoui, M. Charif, M. Khalladi, and M. Iben Yaich, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," Optik --- International Journal for Light and Electron Optics, Vol. 126, No. 1, 1479-1482, 2015.
    doi:10.1016/j.ijleo.2015.04.032

    8. Yang, H., Y. Zhou, Y. Zan, and R. Chen, "SO-FDTD analysis of the plasma reflectance of Epstein distribution ," Plasma Science and Technology, Vol. 8, No. 6, 2013.

    9. Ekdiha, Y., K. Mounirh, S. El Adraoui, M. Khalladi, and M. Iben Yaich, "Analysis of Epstein distribution effect on the plasma reflectance," Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, Springer, Saidia, 2018.

    10. Huang, Sh. J. and Y. Zhon, "Exponential time differencing FTDT formulation for plasma," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1393-1364, 2007.

    11. Huang, Sh. J. and F. Li, "FTDT implementation for magnetoplasma medium using exponential time differencing," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 183-185, 2005.
    doi:10.1109/LMWC.2005.844219

    12. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research, Vol. 64, No. 10, 157-166, 2018.
    doi:10.2528/PIERM17110103

    13. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2013.
    doi:10.1109/LMWC.2002.802027

    14. Becker, K. H., U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-equilibrium Air Plasmas at Atmospheric Pressure, Series in Plasma Physics, Nov. 2004.

    15. Kocifaj, M., J. Klaka, F. Kundracik, and G. Videen, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, No. 11, 765-769, 2015.
    doi:10.1002/andp.201500202