Vol. 83

Latest Volume
All Volumes
All Issues
2019-04-15

An Improved Calibration Algorithm for the L-Band 1-D Synthetic Aperture Radiometer

By Aili Zhang, Hao Liu, and Ji Wu
Progress In Electromagnetics Research Letters, Vol. 83, 107-114, 2019
doi:10.2528/PIERL19021705

Abstract

L-band one-dimensional (1-D) synthetic aperture radiometer is a passive microwave imager that aims to produce global sea surface salinity and soil moisture maps. Two instrument concepts for the L-band 1-D synthetic aperture radiometer have been proposed and selected as candidate payloads for future Chinese space missions, including MICAP (Microwave Imager Combined Active and Passive) for the Chinese Ocean Salinity Mission and IMI (Interferometric Microwave Imager) for the Water Cycle Observation Mission (WCOM). For a synthetic aperture radiometer, spatial imaging error is defined as the difference between the original brightness temperature (BT) and the retrieved BT images within the alias-free field of view (AF-FOV). The main causes of image spatial error in the L-band 1-D system are antenna elements spacing and antenna patterns error. Flat target transformation (FTT) algorithm is always useful for correcting radiometer imaging, but there is still a concave residual error in the retrieved image. An improved calibration algorithm is proposed, which replaces the cold sky view in the FTT with a stable reference scene BT image. A task simulator has been set up to evaluate the new method. The proposed calibration algorithm is shown to reduce the spatial bias and improve the quality of the retrieved BT image.

Citation


Aili Zhang, Hao Liu, and Ji Wu, "An Improved Calibration Algorithm for the L-Band 1-D Synthetic Aperture Radiometer," Progress In Electromagnetics Research Letters, Vol. 83, 107-114, 2019.
doi:10.2528/PIERL19021705
http://test.jpier.org/PIERL/pier.php?paper=19021705

References


    1. Corbella, I., "TMIRAS calibration and performance: Results from the SMOS in-orbit commissioning phase," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, 3147-3155, 2011.
    doi:10.1109/TGRS.2010.2102769

    2. Vine, D. M. L., "Aquarius: An instrument to monitor sea surface salinity from space," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 7, 2040-2050, 2007.
    doi:10.1109/TGRS.2007.898092

    3. Piepmeier, J. R., "SMAP L-band microwave radiometer: Instrument design and first year on orbit," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 1954-1966, 2017.
    doi:10.1109/TGRS.2016.2631978

    4. Liu, H., et al., "combined L-band synthetic aperture radiometer and fan-beam scatterometer for soil moisture and Ocean salinity measurement ," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4644-4647, Munich, 2012.
    doi:10.1109/IGARSS.2012.6350430

    5. Niu, L., et al., "Experimental study of an L-band synthetic aperture radiometer for ocean salinity measurement," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 418-421, Beijing, 2016.
    doi:10.1109/IGARSS.2016.7729103

    6. Camps, A., et al., "Improved image reconstruction algorithms for aperture synthesis radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 146-158, 2008.
    doi:10.1109/TGRS.2007.907603

    7. Corbella, I., et al., "The visibility function in interferometric aperture synthesis radiometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1677-1682, 2004.
    doi:10.1109/TGRS.2004.830641

    8. Diez-Garcia, R. and M. Martin-Neira, "Antenna spacing and pattern differences: Their impact in MIRAS reconstruction error," 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 19-24, Espoo, 2016.

    9. Martin-Neira, M., et al., "The flat target transformation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 3, 613-620, 2008.
    doi:10.1109/TGRS.2008.916259

    10. Corbella, I., A. Camps, and F. Torres, "Analysis of noise-injection networks for interferometric-radiometer calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 545-552, 2000.
    doi:10.1109/22.842026

    11. Moreno-Galbis, P., J. Kainulainen, and M. Martin-Neira, "Experimental demonstration of the Corbella equation for aperture synthesis microwave radiometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 4, 945-957, 2007.
    doi:10.1109/TGRS.2006.888863

    12. Tanner, A. B. and C. T. Swift, "Calibration of a synthetic aperture radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 1, 257-267, 1993.
    doi:10.1109/36.210465

    13. Corbella, I., et al., "Brightness-temperature retrieval methods in synthetic aperture radiometers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, 285-294, 2009.
    doi:10.1109/TGRS.2008.2002911

    14. Gourrion, J., et al., "Characterization of the SMOS instrumental error pattern correction over the ocean," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 4, 793-797, 2012.
    doi:10.1109/LGRS.2011.2181990

    15. Yin, X., J. Boutin, and P. Spurgeon, "Biases between measured and simulated SMOS brightness temperatures over ocean: Influence of sun," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, No. 3, 1341-1350, 2013.
    doi:10.1109/JSTARS.2013.2252602