Vol. 85

Latest Volume
All Volumes
All Issues
2019-07-08

Performance Evaluation of OADM for Super Dense Wavelength Division Multiplexing System

By Chakresh Kumar and Ghanendra Kumar
Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019
doi:10.2528/PIERL19022503

Abstract

Performance of optical add-drop multiplexer (OADM) for 400 channels with data rate of 20 Gbps for super dense wavelength division (SD-WDM) multiplexing system has been investigated in terms of varying transmission distance from 50 km to 250 km and 80 km to 240 km for enhancing optical communication. Long haul amplification is maintained by RAMAN-EDFA hybrid optical amplifier (HOA). Evaluation is carried out in terms of bit error rate (BER) and dispersion.

Citation


Chakresh Kumar and Ghanendra Kumar, "Performance Evaluation of OADM for Super Dense Wavelength Division Multiplexing System," Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019.
doi:10.2528/PIERL19022503
http://test.jpier.org/PIERL/pier.php?paper=19022503

References


    1. Liu, X., S. Chandrasekhar, and P. J. Winzer, "Digital signal processing techniques enabling multi-Tb/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels," IEEE Signal Process. Mag., Vol. 31, No. 2, 16-24, Mar. 2014.
    doi:10.1109/MSP.2013.2285934

    2. Xia, T. J., S. Gringeri, and M. Tomizawa, "High-capacity optical transport networks," IEEE Commun. Mag., Vol. 50, No. 11, 170-178, Nov. 2012.
    doi:10.1109/MCOM.2012.6353698

    3. Sano, A., H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, "30 × 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes," Eur. Conf. Opt. Commun., Paper PD.1.7, Berlin, Germany, 2007.

    4. Chen, Y., J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, "Experimental demonstration of ROADM functionality on an optical SCFDM superchannel," Photon. Technol. Lett., Vol. 24, No. 3, 215-217, 2012.
    doi:10.1109/LPT.2011.2176327

    5. Goldfarb, G., G. Li, and M. G. Taylor, "Orthogonal wavelength division multiplexing using coherent detection," Photon. Technol. Lett., Vol. 19, No. 24, 2015-2017, 2007.
    doi:10.1109/LPT.2007.909895

    6. Sano, A., E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, "No-guard-interval coherent optical OFDM for 100Gb/s long-haul WDM transmission," J. Lightw. Technol., Vol. 27, No. 16, 3705-3713, Aug. 2009.
    doi:10.1109/JLT.2009.2023369

    7. Shieh, W. and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett., Vol. 42, No. 10, 587-589, 2006.
    doi:10.1049/el:20060561

    8. Ellis, A. D. and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," Photon. Technol. Lett., Vol. 15, No. 2, 504-506, 2005.
    doi:10.1109/LPT.2004.839393

    9. Poti, L., G. Meloni, G. Berrettini, F. Fresi, M. Secondini, T. Foggi, G. Colavolpe, E. Forestieri, A. D’Errico, F. Cavaliere, R. Sabella, and G. Prati, "Casting 1 Tb/s DP-QPSK communication into 200 GHz bandwidth," Eur. Conf. Exhib. Opt. Commun., Paper P4.19, Amsterdam, The Netherlands, 2012.

    10. Palkopoulou, E., G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, and I. Tomkos, "yquist-WDM-based flexible optical networks: Exploring physical layer design parameters," J. Lightw. Technol., Vol. 31, No. 14, 2332-2339, Jul. 2013.
    doi:10.1109/JLT.2013.2265324

    11. Bosco, G., V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, "On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QA subcarriers," J. Lightw. Technol., Vol. 29, No. 1, 53-61, Jan. 2011.
    doi:10.1109/JLT.2010.2091254

    12. Pincemin, E., M. Song, J. Karaki, A. Poudoullec, N. Nicolas, M. Van der Keur, Y. Jaouen, P. Gravey, M. Morvan, and G. Froc, "Multiband OFDM transmission with sub-band optical switching," Eur. Conf. Opt. Commun., Paper Th.2.A.1, London, UK, 2013.

    13. Winzer, P. J., "An opto-electronic interferometer and its use in subcarrier add/drop multiplexing," J. Lightw. Technol., Vol. 31, No. 11, 1775-1782, Jun. 2013.
    doi:10.1109/JLT.2013.2257687

    14. Taylor, M. G., "Coherent optical channel substitution,", U.S. Patent 8 050 564, Nov. 1, 2011.

    15. Zervas, G., et al., "Multi-granular optical cross-connect: Design, analysis, and demonstration," IEEE/OSA J. Opt. Commun. Netw., Vol. 1, No. 1, 69-84, Jun. 2009.
    doi:10.1364/JOCN.1.000069

    16. Furukawa, H., H. Harai, T. Miyazawa, S. Shinada, W. Kawasaki, and N. Wada, "Development of optical packet and circuit integrated ring network testbed," Opt. Exp., Vol. 19, No. 26, B242-B250, Dec. 2011.
    doi:10.1364/OE.19.00B242

    17. Chiaroni, D., et al., "Packet OADMs for the next generation of ring networks," Bell Labs Tech. J., Vol. 14, No. 4, 265-283, 2010.
    doi:10.1002/bltj.20415

    18. Yuang, M., et al., "HOPSMAN: An experimental testbed system for a 10-Gb/s optical packet-switched WDM metro ring network," IEEE Commun. Mag., Vol. 46, No. 7, 158-166, Jul. 2008.
    doi:10.1109/MCOM.2008.4557060