In this work, a novel planar four-port microstrip triplexer is designed and analyzed to operate at 1.9 GHz, 2.5 GHz, and 3.35 GHz for wireless communication applications. The proposed structure consists of a compact patch and spiral cells. The main advantage of this triplexer is its very compact size, with a cross size of only 15 mm×15 mm (0.017λg2). Sharp frequency response at the edges of all passbands, low insertion losses (0.25 dB, 0.4 dB and 0.11 dB), and high return losses (45 dB, 54 dB and 40 dB) in all channels are the other advantages of the designed triplexer. Additionally, the triplexer has reasonable isolations (S23, S24, S34), better than 20 dB. To verify the design method, both EM simulation and measurement results are obtained. The comparison shows that the measured and simulated results are in good agreement, which proves the feasibility of this work.
2. Chen, C.-F., T.-M. Shen, T.-Y. Huang, and R.-B. Wu, "Design of compact quadruplexer based on the tri-mode net-type resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 10, 534-536, 2011.
doi:10.1109/LMWC.2011.2165278
3. Noori, L. and A. Rezaei, "Design of a compact narrowband quad-channel diplexer for multi-channel long-range RF communication systems," Analog Integrated Circuits and Signal Processing, Vol. 94, No. 1, 1-8, 2018.
doi:10.1007/s10470-017-1063-7
4. Hsu, K.-W., W.-C. Hung, and W.-H. Tu, "Design of four-channel diplexer using distributed coupling technique," Microw. Opt. Technol. Lett., Vol. 58, 166-170, 2016.
doi:10.1002/mop.29516
5. Rezaei, A. and L. Noori, "Novel low-loss microstrip triplexer using coupled lines and step impedance cells for 4G and WiMAX applications," Turkish Journal of Electrical Engineering & Computer Sciences, No. 26, 1871-1880, 2018.
doi:10.3906/elk-1708-48
6. El-Tokhy, A., R. Wu, and Y. Wang, "Microstrip triplexer using a common triple-mode resonator," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1815-1820, 2018.
doi:10.1002/mop.31244
7. Chen, C.-F., T.-M. Shen, T.-Y. Huang, and R.-B. Wu, "Design of multimode net-type resonators and their applications to filters and multiplexers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 848-856, 2011.
doi:10.1109/TMTT.2011.2109392
8. Jin, X. and Z. Yan, "Microstrip triplexer and switchable triplexer using new impedance matching circuits," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, e21057, doi:10.1002/mmce.21057.
9. Percaz, J. M., M. Chudzik, I. Arnedo, I. Arregui, F. Teberio, M. A. G. Laso, and T. Lopetegi, "Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 873-876, 2015.
10. Tang, C.W. and M. G. Chen, "Packaged microstrip triplexer with star-junction topology," Electron. Lett., Vol. 48, 699-701, 2012.
doi:10.1049/el.2012.0469
11. Huang, Y., G. Wen, and J. Li, "Compact microstrip triplexer based on twist-modified asymmetric split-ring resonators," Electron. Lett., Vol. 50, 1712-1713, 2014.
doi:10.1049/el.2014.2805
12. Wu, H.-W., S.-H. Huang, and Y.-F. Chen, "Compact microstrip triplexer based on coupled step impedance resonator," IEEE MTT-S International Microwave Symposium Digest (IMS), 2013.
13. Chen, F.-C., J.-M. Qiu, H.-T. Hu, Q.-X. Chu, and M. J. Lancaster, "Design of microstrip lowpassband-pass triplexer with high isolation," IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 12, 805-807, 2015.
doi:10.1109/LMWC.2015.2496797
14. Deng, P.-H., M.-I. Lai, S.-K. Jeng, and Ch. H. Chen, "Design of matching circuits for microstrip triplexers based on stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4185-4192, 2006.
doi:10.1109/TMTT.2006.886161
15. Lin, S. C. and C. Y. Yeh, "Design of microstrip triplexer with high isolation based on parallel coupled-line filters using T-shaped short-circuited resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 10, 648-650, 2015.
doi:10.1109/LMWC.2015.2463215
16. Sugchai, T., I. Nattapong, and C. Apirun, "Design of microstrip triplexer using common dual-mode resonator with multi-spurious mode suppression for multiband applications," Appl. Mech. Mater, Vol. 763, 182-188, 2015.
doi:10.4028/www.scientific.net/AMM.763.182
17. Zhu, C., J. Zhou, and Y. Wang, "Design of microstrip planar triplexer for multimode/multi-band wireless systems," Microwave J., 1-19, 2010.
18. Wu, J.-Y., K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, "High-isolation microstrip triplexer using multiple-mode resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 4, 173-175, 2012.
doi:10.1109/LMWC.2012.2189101
19. Chinig, A., A. Errkik, L. El Abdellaoui, A. Tajmouati, J. Zbitoum, and M. Latrach, "Design of a microstrip diplexer and triplexer using open loop resonators," J. Microw. Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 65-80, 2016.
doi:10.1590/2179-10742016v15i2602
20. Karlsson, M., P. HÅkansson, and S. Gong, "A frequency triplexer for ultra-wideband systems utilizing combined broadside- and edge-coupled filters," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 794-801, 2008.
doi:10.1109/TADVP.2008.2004415