Vol. 87

Latest Volume
All Volumes
All Issues
2019-08-30

Directional Adaptive MUSIC-Like Algorithm Under Symmetric α-Stable Distributed Noise

By Narong Borijindargoon and Boon Ng
Progress In Electromagnetics Research Letters, Vol. 87, 29-37, 2019
doi:10.2528/PIERL19062605

Abstract

An algorithm named MUSIC-like algorithm was previously proposed as an alternative method to the MUltiple SIgnal Classification (MUSIC) algorithm for direction-of-arrival (DOA) estimation. Without requiring explicit model order estimation, it was shown to have robust performance particularly in low signal-to-noise ratio (SNR) scenarios. In this letter, the working principle of a relaxation parameter β, a parameter which was introduced into the formulation of the MUSIC-like algorithm, is provided based on geometrical interpretation. To illustrate its robustness, the algorithm will be examined under symmetric α-stable distributed noise environment. An adaptive framework is then developed and proposed in this letter to further optimize the algorithm. The proposed adaptive framework is compared with the original MUSIC-like, MUSIC, FLOM-MUSIC, and SSCM-MUSIC algorithms. A notable improvement in terms of targets resolvability of the proposed method is observed under different impulse noise scenarios as well as different SNR levels.

Citation


Narong Borijindargoon and Boon Ng, "Directional Adaptive MUSIC-Like Algorithm Under Symmetric α-Stable Distributed Noise," Progress In Electromagnetics Research Letters, Vol. 87, 29-37, 2019.
doi:10.2528/PIERL19062605
http://test.jpier.org/PIERL/pier.php?paper=19062605

References


    1. Nikias, C. L. and M. Shao, Signal Processing with Alpha-stable Distributions and Applications, Wiley-Interscience, New York, N.Y., 1995.

    2. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
    doi:10.1109/TAP.1986.1143830

    3. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the Minimum-Norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Process., Vol. 34, No. 2, 331-341, Apr. 1986.
    doi:10.1109/TASSP.1986.1164815

    4. Patole, S. M., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Process. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.
    doi:10.1109/MSP.2016.2628914

    5. Wan, L., X. Kong, and F. Xia, "Joint range-doppler-angle estimation for intelligent tracking of moving aerial targets," IEEE Internet Things J., Vol. 5, No. 3, 1625-1636, Jun. 2018.
    doi:10.1109/JIOT.2017.2787785

    6. Kim, J. M., O. K. Lee, and J. C. Ye, "Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing," IEEE Trans. Inf. Theory, Vol. 58, No. 1, 278-301, Jan. 2012.
    doi:10.1109/TIT.2011.2171529

    7. Davies, M. E. and Y. C. Eldar, "Rank awareness in joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 2, 1135-1146, Feb. 2012.
    doi:10.1109/TIT.2011.2173722

    8. Lee, K., Y. Bresler, and M. Junge, "Subspace methods for joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 6, 3613-3641, Jun. 2012.
    doi:10.1109/TIT.2012.2189196

    9. Lee, O., J. Kim, Y. Bresler, and J. C. Ye, "Diffuse optical tomography using generalized MUSIC algorithm," IEEE Int. Symp. Biomed. Imag., 1142-1145, Jun. 2011.

    10. Scholz, B., "Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data," IEEE Trans. Med. Imag., Vol. 21, No. 6, 588-595, Jun. 2002.
    doi:10.1109/TMI.2002.800609

    11. Borijindargoon, N., B. P. Ng, and S. Rahardja, "MUSIC-like algorithm for source localization in electrical impedance tomography," IEEE Trans. Ind. Electron, Vol. 66, No. 6, 4661-4671, Jun. 2019.
    doi:10.1109/TIE.2018.2863196

    12. Adali, T. and S. S. Haykin, Adaptive Signal Processing: Next Generation Solutions, John Wiley & Sons, Hoboken, New Jersey, 2010.
    doi:10.1002/9780470575758

    13. Liu, T. H. and J. M. Mendel, "A subspace-based direction finding algorithm using fractional lower order statistics," IEEE Signal Process. Mag., Vol. 49, No. 8, 1605-1613, Aug. 2001.
    doi:10.1109/78.934131

    14. Tsakalides, P. and C. L. Nikias, "The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments," IEEE Signal Process. Mag., Vol. 44, No. 7, 1623-1633, Jul. 1996.
    doi:10.1109/78.510611

    15. Visuri, S., H. Oja, and V. Koivunen, "Subspace-based direction-of-arrival estimation using nonparametric statistics," IEEE Signal Process. Mag., Vol. 49, No. 9, 2060-2073, Sept. 2001.
    doi:10.1109/78.942634

    16. Ying, Z. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Trans. Signal Process., Vol. 58, No. 3, 1668-1676, Mar. 2010.
    doi:10.1109/TSP.2009.2037074

    17. Reddy, V. V., B. P. Ng, and A. W. H. Khong, "Insights into MUSIC-like algorithm," IEEE Trans. Signal Process., Vol. 61, No. 10, 2551-2556, May 2013.
    doi:10.1109/TSP.2013.2251337

    18. Lim, H. S., B. P. Ng, and V. V. Reddy, "Generalized MUSIC-Like array processing for underwater environments," IEEE J. Ocean. Eng., Vol. 42, No. 1, 124-134, Jan. 2017.

    19. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, Aug. 1969.
    doi:10.1109/PROC.1969.7278