In this paper, a center-fed substrate integrated waveguide (SIW) inclined slot array antenna is designed for a one-dimensional active phased array. A novel coaxial-to-SIW transition is employed to realize the central feed for enhancing bandwidth. The antenna prototype printed onto a single-layer Rogers 5870 is composed of 32×16 inclined slots working at Ku-band. As shown in measured result, the bandwidth with return loss < -10 dB is from 16.6 to 17.1 GHz, and the sidelobe levels of arrays are below -24.8 dB at 16.8 GHz in H planes. The measured gain is 31.8 dB at 16.8 GHz with the aperture efficiency of 65%. The active phased array is assembled by an antenna and 32 Tx/Rx modules, and the measured results show that the main lobe can obtain a wide-angle scanning from -45 to 45 degrees in E planes. The antenna array is suitable for low profile small active phased array radars and communication systems that require spatial wide-angle scanning.
2. Zhang, A. Q., Z. G. Liu, and W. B. Lu, "A tunable attenuator on graphene-based half-mode substrate integrated waveguide," 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 4, Auckland, New Zealand, 2018.
3. Giordano, M. C., S. Mastel, and C. Liewald, "Phase-resolved terahertz self-detection near-field microscopy," Opt. Express, Vol. 26, 18423, 2018.
doi:10.1364/OE.26.018423
4. Mitrofanov, O., L. Viti, and E. Dardanis, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Sci. Rep., Vol. 7, 44240, 2017.
doi:10.1038/srep44240
5. Viti, L., J. Hu, and D. Coquillat, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, 20474, 2016.
doi:10.1038/srep20474
6. Boukhvalov, D., B. G¨urbulak, and S. Duman, "The advent of indium selenide: Synthesis, electronic properties, ambient stability and applications," Nanomaterials, Vol. 7, 372, 2017.
doi:10.3390/nano7110372
7. Liu, C., L. Wang, and X. Chen, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 1800836, 2018.
doi:10.1002/adom.201800836
8. Tang, W., A. Politano, and C. Guo, "Ultra sensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct. Mater., Vol. 28, 1801786, 2018.
doi:10.1002/adfm.201801786
9. Farrall, A. and P. Young, "Integrated waveguide slot antennas," IEEE Electron. Lett., Vol. 407, No. 16, 974-975, 2004.
doi:10.1049/el:20045505
10. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463
11. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
doi:10.2528/PIERC11091912
12. Zou, X., C.-M. Tong, and D.-W. Yu, "Y-junction power divider based on substrate integrated waveguide," IEEE Electron. Lett., Vol. 47, No. 25, 1375-1376, 2011.
doi:10.1049/el.2011.2953
13. Taringou, F., J. Bornemann, and K. Wu, "Broadband coplanar waveguide and microstrip low-noise amplifier integrations for K-band SIW applications on low-permittivity substrate," IEEE Trans. Antennas Propag., Vol. 8, 99-103, 2014.
14. Khan, A. A. and M. K. Mandal, "A compact broadband direct coaxial line to SIW transition," IEEE Microwave Wireless Compon. Lett., Vol. 26, 894-896, 2016.
doi:10.1109/LMWC.2016.2615817
15. Park, S.-J., D.-H. Shin, and S.-O. Park, "Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device," IEEE Antennas Wirel. Propag. Lett., Vol. 64, 923-931, 2016.
doi:10.1109/TAP.2015.2513075
16. Xia, L., R. Xu, and B. Yan, "Broadband transition between air-filled waveguide and substrate integrated waveguide," Electron. Lett., Vol. 42, 1403-1405, 2006.
doi:10.1049/el:20062228
17. Yang, D., F. F. Gao, and J. Pan, "A single-layer dual-frequency shared-aperture SIW slot antenna array with a small frequency ratio," IEEE Antennas Wirel. Propag. Lett., Vol. 17, 1049-1051, 2018.
18. Li, Y., W. Hong, G. Hua, J.-X Chen, and K. Wu, "Simulation and experiment on SIW slot array antennas," IEEE Microwave Wireless Compon. Lett., Vol. 14, 446-448, 2004.
19. Liu, B., et al., "Substrate integrated waveguide (SIW) monopulse slot antenna array," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 275-279, 2009.
doi:10.1109/TAP.2008.2009743
20. Kim, D.-Y. and S. Nam, "Excitation control method for a low sidelobe SIW series slot array antenna with 45 linear polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5807-5812, 2013.
doi:10.1109/TAP.2013.2277711
21. Ando, M., Y. Tsunemitsu, and M. Zhang, "Reduction of long line effects in single-layer slotted waveguide arrays with an embedded partially corporate feed," IEEE Antennas Wirel. Propag. Lett., Vol. 58, 2275-2280, 2010.
doi:10.1109/TAP.2010.2044346
22. Li, T. and W.-B. Dou, "Millimetre-wave slotted array antenna based on double-layer substrate integrated," IEEE Trans. Antennas Propag., Vol. 9, 882-888, 2015.
23. Xu, J.-F., Z.-N. Chen, and X.-M. Qing, "CPW center-fed single-layer SIW slot antenna array for automotive radars," IEEE Antennas Wirel. Propag. Lett., Vol. 62, 4528-4535, 2014.
doi:10.1109/TAP.2014.2330587
24. Chen, M. and W.-Q. Che, "Bandwidth enhancement of substrate integrated waveguide (SIW) slot antenna with center-fed techniques," IEEE Antennas Technology (iWAT), 349-351, 2011.
25. Wen, Y.-Q. and B.-Z. Wang, "Wide-beam SIW-slot antenna for wide-angle scanning phased array," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1638-1641, 2016.
doi:10.1109/LAWP.2016.2519938