Vol. 90

Latest Volume
All Volumes
All Issues
2020-03-05

FDA Transmit Beamforming Synthesis Using Chebyshev Window Function Technique to Counteract Deceptive Electronic Countermeasures Signals

By Shaddrack Yaw Nusenu, Abdul Basit, and Emmanuel Asare
Progress In Electromagnetics Research Letters, Vol. 90, 53-60, 2020
doi:10.2528/PIERL19121005

Abstract

Frequency diverse array (FDA) has gained remarkable attention in both radar and communication applications over the years due to its unique range-dependent beamforming. On the other hand, extremely less attention is paid to the exploitation of FDA in electronic countermeasures (ECM). Hence, this paper proposes a symmetric frequency diverse array via Chebyshev window function in ECM applications. Specifically, we utilize Chebyshev window function to design the coefficient of both transmit weights and frequency diverse increments to uncouple range-angle response of the true target to counteract deceptive ECM signals. In addition, we consider real constraint scenario, i.e., the propagation of the electromagnetic signal arriving at the true target position, which has been usually neglected in the FDA literature. The attribute of the proposed scheme is that it is able to discriminate between true target location and false target(s) location. This implies that the generated false target(s) by the jammer can be significantly suppressed in either angular or range profiles mismatch. Further, we adopt Swerling 1 model to devise generalized Neyman-Pearson design rule to evaluate the probability of detection of the proposed scheme. Numerical results illustrate the achievements of the proposed scheme.

Citation


Shaddrack Yaw Nusenu, Abdul Basit, and Emmanuel Asare, "FDA Transmit Beamforming Synthesis Using Chebyshev Window Function Technique to Counteract Deceptive Electronic Countermeasures Signals," Progress In Electromagnetics Research Letters, Vol. 90, 53-60, 2020.
doi:10.2528/PIERL19121005
http://test.jpier.org/PIERL/pier.php?paper=19121005

References


    1. Wong, K. T., Y. I. Wu, Y. S. Hsu, and Y. Song, "A lower bound of DOA estimates by an array randomly subject to sensor-breakdown," IEEE Sensors Journal, Vol. 12, No. 5, 911-913, May 2012.
    doi:10.1109/JSEN.2011.2165704

    2. Giannoccaro, N. I. and L. Spedicato, "A new strategy for spatial reconstruction of orthogonal planes using a rotating array of ultrasonic sensors," IEEE Sensors Journal, Vol. 12, No. 5, 1307-1316, May 2012.
    doi:10.1109/JSEN.2011.2170062

    3. Yong, S. and J. T. Bernhard, "A pattern reconfigurable null scanning antenna," IEEE Transactions Antennas Propagation, Vol. 60, No. 10, 4538-4544, Oct. 2012.
    doi:10.1109/TAP.2012.2207336

    4. Ahmed, A., et al., "Subarray-based FDA radar to counteract deceptive ECM signals," EURASIP Journal on Advances in Signal Processing, 1-11, 2016, DOI 10.1186/s13634-016-0403-6.

    5. Wang, W. Q., "Mitigating range ambiguities in high PRF SAR with OFDM waveform diversity," IEEE Geoscience Remote Sensing Letters, Vol. 10, No. 1, 101-105, Jan. 2013.
    doi:10.1109/LGRS.2012.2193870

    6. Poisel, R. A., Information Warfare and Electronic Warfare Systems, Artech House, Norwood, MA, USA, 2013.

    7. Liu, N. J. and Y. T. Zhang, "A survey of radar ECM and ECCM," IEEE Transactions Aerospace Electron Systems, Vol. 31, No. 3, 1110-1120, Jul. 1995.

    8. Farina, A., "Electronic counter-countermeasures," Radar Handbook, 3rd edition, M. Skolnik (ed.), McGraw-Hill, New York, NY, USA, 2008.

    9. Roome, S. J., "Digital radio frequency memory," Electronics and Communication Engineering Journal, Vol. 2, No. 4, 147-153, Aug. 1990.
    doi:10.1049/ecej:19900035

    10. Berger, S. D., "Digital radio frequency memory linear range gate stealer spectrum," IEEE Transactions Aerospace Electron Systems, Vol. 39, No. 2, 725-735, Apr. 2003.
    doi:10.1109/TAES.2003.1207279

    11. Akhtar, J., "Orthogonal block coded ECCM schemes against repeat radar jammers," IEEE Transactions Aerospace Electron Systems, Vol. 45, No. 3, 1218-1226, 2009.
    doi:10.1109/TAES.2009.5259195

    12. Zhang, J., D. Zhu, and G. Zhang, "New antivelocity deception jamming technique using pulses with adaptive initial phases," IEEE Transactions Aerospace Electron Systems, Vol. 49, No. 2, 1290-1300, 2013.
    doi:10.1109/TAES.2013.6494414

    12. Zhang, J., D. Zhu, and G. Zhang, "New antivelocity deception jamming technique using pulses with adaptive initial phases," IEEE Transactions Aerospace Electron Systems, Vol. 49, No. 2, 1290-1300, 2013.
    doi:10.1109/TAES.2013.6494414

    13. Rao, B., S. Xiao, X. Wang, and T. Wang, "Maximum likelihood approach to the estimation and discrimination of exoatmospheric active phantom tracks using motion features," IEEE Transactions Aerospace Electron Systems, Vol. 48, No. 1, 794-819, 2012.
    doi:10.1109/TAES.2012.6129671

    14. Coluccia, A. and G. Ricci, "ABORT-Like detection strategies to combat possible deceptive ECM signals in a network of radars," IEEE Transactions Signal Processing, Vol. 63, No. 11, 290-2914, 2015.
    doi:10.1109/TSP.2015.2415754

    15. Bandiera, F., A. Farina, D. Orlando, and G. Ricci, "Detection algorithms to discriminate between radar targets and ECM signals," IEEE Transactions Signal Processing, Vol. 58, No. 12, 5489-5993, 2010.
    doi:10.1109/TSP.2010.2077283

    16. Greco, M., F. Gini, and A. Farina, "Radar detection and classification of jamming signals belonging to a cone class," IEEE Transactions Signal Processing, Vol. 56, No. 5, 1984-1993, 2008.
    doi:10.1109/TSP.2007.909326

    17. Xu, J., G. Liao, S. Zhu, and H. C. So, "Deceptive jamming suppression with frequency diverse MIMO radar," Signal Processing, Vol. 113, 9-17, 2015.
    doi:10.1016/j.sigpro.2015.01.014

    18. Gang, L., H. Huang, and W. Q. Wang, "Frequency diverse array radar in counteracting mainlobe jamming signals," 2017 IEEE Radar Conference (RadarConf), 1228-1232, 2017.

    19. Nusenu, S. Y., Z. Wang, and W. Q. Wang, "FDA radar using Costas sequence modulated frequency increments," 2016 CIE International Conference on Radar, 1-4, Oct. 10-13, 2016, DOI:10.1109/RADAR.2016.8059332.

    20. Nusenu, S. Y., W. Q. Wang, and A. Basit, "Time-modulated FD-MIMO array for integrated radar and communication systems ," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1015-1019, Jun. 2018.
    doi:10.1109/LAWP.2018.2829729

    21. Nusenu, S. Y. and W.-Q. Wang, "Dual-function FDA MIMO radar-communications system employing costas signal waveforms," 2018 IEEE Radar Conference (RadarConf), 0033-0038, 2018.
    doi:10.1109/RADAR.2018.8378526

    22. Nusenu, S. Y., et al., "Dual-function radar-communications system design via sidelobe manipulation based on FDA Butler matrix," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 452-456, Mar. 2019.
    doi:10.1109/LAWP.2019.2894015

    23. Nusenu, S. Y. and A. Basit, "Cognitive transmit subarray FDA design for integrated radar-communication using flexible sidelobe control," 2018 IEEE 7th International Conference on Adaptive Science and Technology (ICAST), 1-6, 2018.

    24. Nusenu, S. Y., W.-Q. Wang, and J. Xiong, "Time-modulated frequency diverse array for physical-layer security," IET Microwaves, Antennas and Propagation, Vol. 15, No. 3, 336-345, Apr. 2017.

    25. Nusenu, S. Y., W. Q. Wang, and S. Ji, "Secure directional modulation using frequency diverse array antenna," IEEE Radar Conference (RadarConf), 378-382, Seattle, WA, May 2017.

    26. Nusenu, S. Y., H. Chen, W.-Q. Wang, S. Ji, and O. A. K. Opuni-Boachie, "Frequency diverse array using Butler matrix for secure wireless communications," Progress In Electromagnetics Research M, Vol. M, 207-215, 2018.
    doi:10.2528/PIERM17101305

    27. Nusenu, S. Y. and W. Q. Wang, "Range-dependent spatial modulation using frequency diverse array for OFDM wireless communications," IEEE Transactions Vehicular Technology, Vol. 67, No. 11, 10886-10895, 2018.
    doi:10.1109/TVT.2018.2870045

    28. Nusenu, S. Y. and A. Basit, "Frequency diverse array antennas: From their origin to their application in wireless communication systems," Journal of Computer Networks and Communications, 1-12, Article ID 5815678, 2018, https://doi.org/10.1155/2018/5815678.

    29. Nusenu, S. Y., "Development of frequency modulated array antennas for millimeter–wave communications," Wireless Communications and Mobile Computing, Vol. 2019, 1-15, Article ID 6940708, 2019, doi.org/10.1155/2019/6940708.

    30. Chen, K., S. Yang, Y. Chen, and S.-W. Qu, "Accurate models of time invariant beampatterns for frequency diverse array," IEEE Transactions on Antennas and Propagation, 1-1, 2019, DOI: 10.1109/TAP.2019.2896712.

    31. Chen, B., X. Chen, Y. Huang, and J. Guan, "Transmit beampattern synthesis for FDA radar," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 98-101, Jan. 2018.
    doi:10.1109/LAWP.2017.2776957

    32. Dolph, C. L., "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proceedings of the IRE, Vol. 34, 335-348, 1946.
    doi:10.1109/JRPROC.1946.225956

    33. Van, H. L. T., Optimum Array Processing, Wiley, New York, 2002.

    34. Wang, W. Q. and H. C. So, "Range-angle localization of targets by a double-pulse frequency diverse array radar," IEEE Journal Selected Topics Signal Processing, Vol. 8, No. 1, 106-114, 2014.
    doi:10.1109/JSTSP.2013.2285528

    35. Khan, W., I. M. Qureshi, and S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas Wireless Propagation Letters, Vol. 14, 499-502, 2015.
    doi:10.1109/LAWP.2014.2368977