Vol. 90

Latest Volume
All Volumes
All Issues
2020-03-17

Composite Dual Transmission Lines and Its Application to Miniaturization of Gysel Power Divider

By Mukesh Kumar, Gobinda Sen, Sk. Nurul Islam, Susanta Kumar Parui, and Santanu Das
Progress In Electromagnetics Research Letters, Vol. 90, 91-97, 2020
doi:10.2528/PIERL19122603

Abstract

This letter presents novel composite dual-transmission lines. The proposed line consists of one direct series line and two identical transmission lines connected by a series lumped capacitor. The line is analyzed with an even-odd mode analysis method to have simple closed-form design equations. From the design equations, it is also observed that one can maintain a more realizable value of the impedance of the lines and achieve a good amount of miniaturization by adjusting only the lumped capacitor. To verify this technique, a 74.6% miniaturized Gysel power divider (GPD) is designed at 0.95 GHz compared to reference GPD. The physical size of the proposed GPD is 60 mm × 32 mm (equivalently 0.25λg × 0.13λg, λg is guided wavelength line). Moreover, two transmission zeros (TZs) are obtained near passband which improved the out-of-band performance.

Citation


Mukesh Kumar, Gobinda Sen, Sk. Nurul Islam, Susanta Kumar Parui, and Santanu Das, "Composite Dual Transmission Lines and Its Application to Miniaturization of Gysel Power Divider," Progress In Electromagnetics Research Letters, Vol. 90, 91-97, 2020.
doi:10.2528/PIERL19122603
http://test.jpier.org/PIERL/pier.php?paper=19122603

References


    1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Trans. Microw. Theory Tech., Vol. 8, 116-118, 1960.
    doi:10.1109/TMTT.1960.1124668

    2. Chen, C. F., et al., "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Trans. Compon., Packag., Manufact., Tech., Vol. 3, No. 10, 1663-1672, 2013.
    doi:10.1109/TCPMT.2013.2254488

    3. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    doi:10.1002/0471221619

    4. Gysel, U. H., "A new N-way power divider/combiner suitable for high power applications," IEEE MTT-S Int. Dig., 116-118, 1975.

    5. Tang, C. W., M. G. Chen, and C. H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 3, 185-187, 2008.
    doi:10.1109/LMWC.2008.916798

    6. Velidi, V. K., D. Pandey, and S. Sanyal, "Microstrip rat-race couplers with pre-determined miniaturization and harmonic suppression," Microwave Optical Technology Letters, Vol. 52, 30-34, 2010.
    doi:10.1002/mop.24832

    7. Phani Kumar, K. V., R. K. Barik, and S. S. Karthikeyan, "A novel two section branch line coupler employing different transmission line techniques," Int. J. Electron. Commun. (AEÜ), Vol. 70, 738-742, 2016.
    doi:10.1016/j.aeue.2016.02.011

    8. Zhang, H. L., B. J. Hu, and X. Y. Zhang, "Compact equal and unequal dual-frequency power dividers based on composite right-/left handed transmission lines," IEEE Trans. Indus. Ele., Vol. 59, No. 9, 3464-3472, 2012.
    doi:10.1109/TIE.2011.2171178

    9. Karimia, G., H. Siahkamaria, and F. Khamin-Hamedani, "A novel miniaturized Gysel power divider using low-pass filter with harmonic suppression," Int. J. Electron. Commun. (AEÜ), Vol. 69, 856-860, 2015.
    doi:10.1016/j.aeue.2015.02.004

    10. Oraizi, H. and A. Sharifi, "Optimum design of a wideband two-way gysel power divider with input-output impedance matching," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2238-2248, 2009.
    doi:10.1109/TMTT.2009.2027204

    11. Shahi, H. and H. Shamsi, "Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios," Int. J. Electron. Commun. (AEÜ), Vol. 79, 16-25, 2017.
    doi:10.1016/j.aeue.2017.05.024

    12. Zaker, R., A. Abdipour, and R. Mirzavand, "Closed-form design of Gysel power divider with only one isolation resistor ," IEEE Microwave Wirel. Compon. Lett. Aug., Vol. 24, No. 8, 527-529, 2014.
    doi:10.1109/LMWC.2014.2323554

    13. Lin, F., Q. X. Chu, Z. Gong, and Z. Lin, "Compact broadband Gysel power divider with arbitrary power-dividing ratio using microstrip/slotline phase inverter," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1226-1234, 2012.
    doi:10.1109/TMTT.2012.2187067

    14. Guan, J., L. J. Zhang, Z. Y. Sun, Y. Q. Leng, and Y. T. Peng, "Designing power divider by combining Wilkinson and Gysel structure," Electron. Lett., Vol. 48, No. 13, 769-770, 2012.
    doi:10.1049/el.2012.0753

    15. Wu, Y., Z. Zhuang, G. Yan, Y. Liu, and Z. Ghassemlooy, "Generalized dual-band unequal filtering power divider with independently controllable bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 10, 3838-3848, Oct. 2017.
    doi:10.1109/TMTT.2017.2691780

    16. Liu, F., Y. Wang, S. Zhang, and J. Lee, "Design of compact tri-band Gysel power divider with zero-degree composite right-/left-hand transmission lines," IEEE Access, Vol. 7, 34964-34972, 2019.
    doi:10.1109/ACCESS.2019.2904307

    17. Wu, Y., Z. Zhuang, M. Kong, L. Jiao, Y. Liu, and A. A. Kishk, "Wideband filtering unbalanced-to-balanced independent impedance-transforming power divider with arbitrary power ratio," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 10, 4482-4496, Oct. 2018.
    doi:10.1109/TMTT.2018.2856259

    18. Jiao, L., Y. Wu, Z. Zhuang, Y. Liu, and A. A. Kishk, "Planar balanced-to-unbalanced in-phase power divider with wideband filtering response and ultra-wideband common-mode rejection," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 6, 1875-1886, Jun. 2018.
    doi:10.1109/TCSI.2017.2766366

    19. Wang, K., X. Y. Zhang, and B. Hu, "Corrections to ``Gysel power divider with arbitrary power ratios and filtering responses using coupling structure" [Mar. 14 431–440]," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 2, 1144-1144, Feb. 2018.
    doi:10.1109/TMTT.2017.2777971

    20. Wu, H., Y. Wu, Q. Yang, W. Wang, and A. A. Kishk, "Generalized high-isolation n-way Gysel power divider with arbitrary power ratio and different real terminated impedances," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22016, 2020.