This paper presents a 90° broadband compact phase shifter which employs loade λ/2 transmission line. By adding an H shaped open stub loaded transmission line, the bandwidth of the phase shifter is broadened. Detailed theoretical analysis and circuit configuration are presented to explain the mechanism. The proposed phase shifter is fabricated and measured to validate the design principle. The simulated and measured results show that the proposed phase shifter achieves 6.6 to 19.4 GHz bandwidth with low phase instability ±5°, very low insertion loss (0.3 dB in 7.5-15.2GHz), high return loss (10 dB), and a compact size (5.8cm*6.1cm). Good agreements are observed between the measured and simulated results with small phase deviation. Moreover, the configuration of the proposed phase shifter is simple in both design and fabrication which makes the design suitable for actual applications.
2. Gao, B. and Y. Xin, "Improved miniaturized wide-band 90-degree schiffman phase shifter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 493-499, 2009.
doi:10.1163/156939309787612374
3. Ebrahimpouri, M., S. Nikmehr, and A. Pourziad, "Broadband compact SIW phase shifter using omega particles," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 11, 748-750, 2014.
doi:10.1109/LMWC.2014.2350692
4. Nafe, A. and A. Shamin, "An integrable SIW phase shifter in a partially magnetized ferrite lTCC package," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 7, 2264-2274, 2015.
doi:10.1109/TMTT.2015.2436921
5. Peng, H., X. Xia, S. O. Tatu, and T. Yang, "An improved broadband siw phase shifter with embedded air strips," Progress In Electromagnetics Research C, Vol. 67, 185-192, 2016.
doi:10.2528/PIERC16080904
6. Padilla, P., et al., "Broadband electronically tunable reflection-based phase shifter for active-steering microwave reflectarray systems in Ku-band," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 12, 1545-1551, 2016.
doi:10.1080/09205071.2016.1202786
7. Wu, K., T. Djerafi, and O. Kramer, "Dual-layered substrate-integrated waveguide six-port with wideband double-stub phase shifter," IET Microw., Antennas Propag., Vol. 6, No. 15, 1704-1709, 2012.
doi:10.1049/iet-map.2012.0272
8. Yeung, S. H., T. K. Sarkar, M. Salazar-Palma, and A. Garcia-Lamperez, "A multisection phase correcting network for broadband quadrature power splitter design," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 9, 468-470, 2013.
doi:10.1109/LMWC.2013.2274035
9. Ting, H.-L., S.-K. Hsu, and T.-L.Wu, "Broadband eight-port forward-wave directional couplers and four-way differential phase shifter," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 5, 2161-2169, 2018.
doi:10.1109/TMTT.2018.2811478
10. Kuo, C.-J., et al., "A novel wideband circularly polarized dual-fed slot antenna with microstrip feeding network," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 2, 175-187, 2016.
doi:10.1080/09205071.2015.1098574
11. Honari, M. M., R. Mirzavand, and P. Mousavi, "Design of wideband phase shifters with low phase error using parallel inductor and capacitor for wideband antenna applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 7, 716-726, 2017.
doi:10.1080/09205071.2017.1308838
12. Yang, T., M. Ettorre, and R. Saulean, "Novel phase shifter design based on substrate integrated waveguide technology," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 10, 518-520, 2012.
doi:10.1109/LMWC.2012.2217122
13. Abbosh, A., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1941, 2007.
doi:10.1109/TMTT.2007.904051
14. Ibrahim, S. and M. Bialkowski, "Widebang butler matrix in microstrip-slot technology," Proc. Asia-Pacific Microw. Conf., 2104-2107, Singapore, 2009.
15. Huang, Y., et al., "A 1.7–2.7-GHz 4-bit phase shifter based on packaged RF MEMS switches," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 5, 553-565, 2016.
doi:10.1080/09205071.2015.1090347
16. Horestani, A. K., F. Sadeghikia, and Z. Shaterian, "A broadband fixed phase shifter in substrate integrated waveguide technology," 27th Iranian Conference on Electrical Engineering (ICEE 2019), 1576-1578, 2019.
doi:10.1109/IranianCEE.2019.8786700