Vol. 94

Latest Volume
All Volumes
All Issues
2020-10-20

A Novel Frequency Selective Surface with Two Non-Interfering Passbands

By Chenglong Wang and Chunyang Wang
Progress In Electromagnetics Research Letters, Vol. 94, 35-41, 2020
doi:10.2528/PIERL20061703

Abstract

A novel dual-band frequency selective surface (FSS) operating at Ku- and Ka- bands is presented in this paper. The proposed FSS is an aperture element constituted by a square loop loaded with four symmetrical umbrella-shaped stubs on the front side of the dielectric substrate. A good angular stability up to 60° angle of incidence for both TE and TM polarizations is provided by the FSS. Moreover, the two passbands of FSS can be controlled independently and flexibly by changing corresponding structural parameters. A prototype of the FSS is fabricated and measured. The good agreement between simulation and measurement results further proves the performance of the FSS.

Citation


Chenglong Wang and Chunyang Wang, "A Novel Frequency Selective Surface with Two Non-Interfering Passbands," Progress In Electromagnetics Research Letters, Vol. 94, 35-41, 2020.
doi:10.2528/PIERL20061703
http://test.jpier.org/PIERL/pier.php?paper=20061703

References


    1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, USA, 2000.
    doi:10.1002/0471723770

    2. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic wave beam-scanning antenna using near-field rotatable graded-dielectric plates," J. Appl. Phys., Vol. 124, 912-915, 2018.
    doi:10.1063/1.5049204

    3. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 912-915, 2017.
    doi:10.1109/LAWP.2016.2614498

    4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost non-uniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Prppag., Vol. 68, 3328-3335, 2020.
    doi:10.1109/TAP.2020.2969888

    5. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
    doi:10.1126/science.1210713

    6. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Sci. Appl., Vol. 3, e218, 2014.
    doi:10.1038/lsa.2014.99

    7. High, A. A., R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. Deleon, M. D. Lukin, and H. Park, "Visible-frequency hyperbolic metasurface," Nature, Vol. 522, 192, 2015.
    doi:10.1038/nature14477

    8. Phan, T., D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, "High-efficiency, large-area, topology-optimized metasurfaces," Light Sci. Appl., Vol. 8, 48, 2019.
    doi:10.1038/s41377-019-0159-5

    9. Chu, H., Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, and Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials," Light Sci. Appl., Vol. 7, 50, 2018.
    doi:10.1038/s41377-018-0052-7

    10. Fedotov, V. A., J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, "Wave vector selective metasurfaces and tunnel vision filters," Light Sci. Appl., Vol. 4, e306, 2015.
    doi:10.1038/lsa.2015.79

    11. Zabri, S. N., R. Cahill, and A. Schuchinsky, "Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement," Electron. Lett., Vol. 51, 162-164, 2015.
    doi:10.1049/el.2014.3866

    12. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly-polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Trans. Antennas Prppag., Vol. 64, 5542-5546, 2016.
    doi:10.1109/TAP.2016.2623655

    13. Bouslama, M., M. Traii, T. A. Denidni, and A. Gharsallah, "Beam-switching antenna with a new reconfigurable frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1159-1162, 2016.
    doi:10.1109/LAWP.2015.2497357

    14. Narayan, S., G. Gulati, B. Sangeetha, and R. U. Nair, "Novel metamaterial element based FSS for airborne radome applications," IEEE Trans. Antennas Prppag., Vol. 66, 4695-4707, 2018.
    doi:10.1109/TAP.2018.2851365

    15. Wang, H., P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Sci. Rep., Vol. 6, 23081, 2016.
    doi:10.1038/srep23081

    16. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Simulation-driven particle swarm optimization of spatial phase shifters," International Conference on Electromagnetics in Advanced Applications, 2016.

    17. De Alcantara Neto, M. C., H. R. O. Ferreira, J. P. L. Ara´ujo, F. J. B. Barros, A. G. Neto, M. O. Alencar, and G. P. S. Cavalcan, "Compact ultra-wideband FSS optimised through fast and accurate hybrid bio-inspired multiobjective technique," IET Microwaves, Antennas & Propagation, Vol. 14, 884-890, 2020.
    doi:10.1049/iet-map.2019.0821

    18. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. Smith, "Design of an artificial magnetic conductor surface using an evolutionary algorithm," Proc. 19th IEEE International Conference on Electromagnetics in Advanced Applications, 2017.

    19. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.
    doi:10.1109/LAWP.2009.2039110

    20. Zanganeh, E., M. Fallah, A. Abdolali, and N. Komjani, "New approach to design dual-band frequency selective surface based on frequency response tunning of each individual layer," Microw. Opt. Technol. Lett., Vol. 58, 1423-1429, 2016.
    doi:10.1002/mop.29837

    21. Campos, A. L. P. S., R. H. C. Manicoba, L. M. Araujo, and A. G. D'Assuncao, "Analysis of simple FSS cascading with dual band response," IEEE Trans. Magnetics, Vol. 46, 3345-3348, 2010.
    doi:10.1109/TMAG.2010.2046023

    22. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microw. Wireless Compon. Lett., Vol. 18, 785-787, 2008.
    doi:10.1109/LMWC.2008.2007698

    23. Ray, A., M. Kahar, S. Biswas, D. Sarkar, and P. P. Sarkar, "Dual tuned complementary structure frequency selective surface WLAN applications," J. Microw. Optoelectron. Electromagn. Appl., Vol. 11, 144-152, 2012.
    doi:10.1590/S2179-10742012000100012

    24. Li, M. and N. Behdad, "A third-order bandpass frequency selective surface with a tunable transmission null," IEEE Trans. Antennas Propag., Vol. 60, 2109-2113, 2012.
    doi:10.1109/TAP.2012.2186251

    25. Romeu, J. and R.-S. Yahya, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, 1097-1105, 2000.
    doi:10.1109/8.876329

    26. Romeu, J. and Y. Rahmat-Samii, "Dual band FSS with fractal elements," Electron. Lett., Vol. 35, 702-703, 1999.
    doi:10.1049/el:19990487

    27. da F. Silva, P. H., A. F. dos Santos, R. M. S. Cruz, and A. G. D'Assuncao, "Dual-band bandstop frequency selective surfaces with gosperprefractal elements," Microw. Opt. Technol. Lett., Vol. 54, 771-775, 2012.
    doi:10.1002/mop.26663

    28. De Lucena Nobrega, C., M. R. da Silva, P. H. da Fonseca Silva, A. G. D'Assuncao, "Analysis and design of frequency selective surfaces using teragon patch elements for WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 11, 1282-1292, 2014.
    doi:10.1080/09205071.2014.919240

    29. Li, B. and Z. Shen, "Dual-band bandpass frequency selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, 5504-5512, 2014.
    doi:10.1109/TAP.2014.2349526