Vol. 94

Latest Volume
All Volumes
All Issues
2020-10-13

Decoupling of Dual-Band Microstrip Antenna Array with Hybrid Resonant Structure

By Xin-Hong Li
Progress In Electromagnetics Research Letters, Vol. 94, 9-17, 2020
doi:10.2528/PIERL20073002

Abstract

A novel hybrid resonant structure is proposed to decouple a dual-band microstrip antenna array. The decoupling structure is composed of two H-shaped strips, and the lower and upper ones respectively collaborate with an X-shaped slot to reduce mutual coupling at 4.5 GHz and 5.5 GHz. Two sub-patches of different sizes share a connection feeding line to construct the dual-band array element, which is arranged along H-plane with the edge-to-edge spacing 0.15 λl and 0.24λhl and λh are the free-space wavelengths of 4.5 GHz and 5.5 GHz, respectively). Simulated and measured results indicate that through loading the hybrid resonant structure, 31.6dB and 24.0dB reductions of mutual coupling at two frequencies are obtained, while the levels of coupling coefficients are both below -30 dB in two operating bands. Moreover, the modified radiation patterns, improved diversity metrics and weakened coupled current distributions further verify its superior decoupling capability. The proposed decoupling structure reveals its promise in being employed in communication system and multielement linearly antenna arrays.

Citation


Xin-Hong Li, "Decoupling of Dual-Band Microstrip Antenna Array with Hybrid Resonant Structure," Progress In Electromagnetics Research Letters, Vol. 94, 9-17, 2020.
doi:10.2528/PIERL20073002
http://test.jpier.org/PIERL/pier.php?paper=20073002

References


    1. Allen, J. L. and B. L. Diamond, "Mutual coupling in array antennas," Technical Report 424 (ESDTR-66-443), Lincoln Laboratory, M.I.T., Lexington, MA, 1966.

    2. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    3. Zhu, Y., Y. Chen, and S. Yang, "Decoupling and low-profile design of dual-band dual-polarized base station antennas using frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5272-5281, 2019.
    doi:10.1109/TAP.2019.2916730

    4. Liu, F., J. Guo, L. Zhao, G.-L. Huang, Y. Li, and Y. Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, 2020.
    doi:10.1109/TAP.2019.2940316

    5. Wang, Z., C. Li, and Y. Yin, "A Meta-surface Antenna Array Decoupling (MAAD) design to improve the isolation performance in a MIMO system," IEEE Access, Vol. 8, 61797-61805, 2020.
    doi:10.1109/ACCESS.2020.2983482

    6. Abdel-Rahman, A. B., "Coupling reduction of antenna array elements using small interdigital capacitor loaded slots," Progress In Electromagnetics Research C, Vol. 27, 15-26, 2012.
    doi:10.2528/PIERC11111809

    7. Wei, K., J.-Y. Li, L. Wang, Z.-J. Xing, and R. Xu, "Mutual coupling reduction by novel fractal defected ground structure bandgap filter," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4328-4335, 2016.
    doi:10.1109/TAP.2016.2591058

    8. Han, X., H. Hafdallah Ouslimani, T. Zhang, and A. C. Priou, "CSRRs for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.
    doi:10.2528/PIERB12052406

    9. Fritz-Andrade, E., A. Perez-Miguel, R. Gomez-Villanueva, and H. Jardon-Aguilar, "Characteristic mode analysis applied to reduce the mutual coupling of a four-element patch MIMO antenna using a defected ground structure," IET Microwaves, Antennas & Propagation, Vol. 14, No. 2, 215-226, 2020.
    doi:10.1049/iet-map.2019.0570

    10. Wu, K. L., C. Wei, X. Mei, and Z. Y. Zhang, "Array-antenna decoupling surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6728-6738, 2017.
    doi:10.1109/TAP.2017.2712818

    11. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
    doi:10.1109/LAWP.2012.2237156

    12. Maddio, S., G. Pelosi, M. Righini, S. Selleri, and I. Vecchi, "Mutual coupling reduction in multilayer patch antennas via meander line parasites," Electronic Letters, Vol. 54, No. 15, 922-924, 2018.
    doi:10.1049/el.2018.1332

    13. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3101-3108, 2019.
    doi:10.1109/TAP.2019.2899039

    14. Xia, R. L., S. W. Qu, P. F. Li, D. Q. Yang, S. Yang, and Z. P. Nie, "Wide-angle scanning phased array using an efficient decoupling network," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5161-5165, 2015.
    doi:10.1109/TAP.2015.2476342

    15. Albannay, M. M., J. C. Coetzee, X. Tang, and K. Mouthaan, "Dual-frequency decoupling for two distinct antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1315-1318, 2012.
    doi:10.1109/LAWP.2012.2226635

    16. Ou, Y., X. Cai, and K. Qian, "Two-element compact antennas decoupled with a simple neutralization line," Progress In Electromagnetics Research Letters, Vol. 65, 63-68, 2017.
    doi:10.2528/PIERL16111801

    17. Zhao, L. and K.-L. Wu, "A dual-band coupled resonator decoupling network for two coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2843-2850, 2015.
    doi:10.1109/TAP.2015.2421973

    18. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    doi:10.1002/0471221619

    19. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, New York, 2011.

    20. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, 2007.
    doi:10.1109/TAP.2007.898618

    21. Kildal, P. S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 104-112, 2004.
    doi:10.1109/MCOM.2004.1367562

    22. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.
    doi:10.1109/MAP.2013.6735522