We hereby present a new equivalent circuit model including both lumped and distributed elements for GCPW-MS transitions (GCPW for Grounded Coplanar Waveguide and MS for Microstrip). In order validating the modelling results, such transitions have been fabricated on a 20 µm-thick BCB (Benzocyclobutene resin) substrate using grounding pads including via-holes of different diameters. The study focuses on the impact of the via-hole design on the performance of the transition and more specifically on its bandwidth. The transitions were made using a simple technological process based on photosensitive polymer. ADS simulation data of the new equivalent circuit model were in very good agreement with measured S-parameters. Both theoretical and experimental results show that the bandwidth of such a transition can reach up to 100 GHz bandwidth using via-holes of 900 µm diameter.
2. Sain, A. and K. L. Melde, "Impact of Ground via placement in grounded coplanar waveguide interconnects," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 1, 136-144, Jan. 2016.
doi:10.1109/TCPMT.2015.2507121
3. Xu, J., C. Sun, B. Xiong, and Y. Luo, "Resonance suppression of grounded coplanar waveguide in submount for 40 Gb/s optoelectronic modules," J. Infrared Millim. Terahertz Waves, Vol. 30, No. 2, 103-108, Feb. 2009.
doi:10.1007/s10762-008-9442-x
4. Zhou, Z. and K. L. Melde, "Development of a broadband coplanar waveguide-to-microstrip transition with vias," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 861-872, Nov. 2008.
doi:10.1109/TADVP.2008.924254
5. Lee, M., H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science, Vol. 298, 1401-1403, Dec. 2002.
doi:10.1126/science.1077446
6. Goldfarb, M. E. and R. A. Pucel, "Modeling via hole grounds in microstrip," IEEE Microw. Guid. Wave Lett., Vol. 1, No. 6, 135-137, Jun. 1991.
doi:10.1109/75.91090
7. CYCLOTENE 4000 series — Kayaku advanced materials,.
8. Kondo, K., U. Suzuki, T. Saito, N. Okamoto, and M. Marunaka, "High-aspect ratio copper-via filling for three dimensional chip stacking," 59th Electronic Components and Technology Conference, 658-662, 2009.
9. Lin, C.-L., P.-S. Chen, Y.-C. Lin, B.-Y. Tsui, and M.-C. Chen, "Via-filling capability of copper film by CVD," J. Electrochem. Soc., Vol. 150, No. 7, C451, May 2003.
doi:10.1149/1.1575739
10. Wu, B., A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys., Vol. 108, No. 5, 051101, Sept. 2010.
doi:10.1063/1.3474652
11. McKerricher, G., J. G. Perez, and A. Shamim, "Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias," IEEE Trans. Electron Devices, Vol. 62, No. 3, 1002-1009, Mar. 2015.
doi:10.1109/TED.2015.2396004
12. Josell, D., B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, "Via filling by electrodeposition: Superconformal silver and copper and conformal nickel," J. Electrochem. Soc., Vol. 149, No. 12, C637, Oct. 2002.
doi:10.1149/1.1517583
13. Luhn, O., C. A. Van Hoof, W. Ruythooren, and J.-P. Celis, "Filling of microvia with an aspect ratio of 5 by copper electrodeposition," Electrochimica Acta, Vol. 54, No. 9, 2504-2508, Mar. 2009.
doi:10.1016/j.electacta.2008.04.002
14. Wiatr, W., D. K. Walker, and D. F. Williams, "Coplanar-waveguide-to-microstrip transition model," 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), Vol. 3, 1797-1800, 2000.
doi:10.1109/MWSYM.2000.862328