Vol. 95

Latest Volume
All Volumes
All Issues
2020-12-09

A New Equivalent Circuit Scheme for Grounded Back-to-Back GCPW-MS-GCPW Transitions Fabricated on a Thin Low-k Substrate

By Pierre-Vincent Dugue, Mohammed El-Gibari, Mathieu Halbwax, Stephane Ginestar, Vanessa Avramovic, Jean-Pierre Vilcot, and Hongwu Li
Progress In Electromagnetics Research Letters, Vol. 95, 33-42, 2021
doi:10.2528/PIERL20093003

Abstract

We hereby present a new equivalent circuit model including both lumped and distributed elements for GCPW-MS transitions (GCPW for Grounded Coplanar Waveguide and MS for Microstrip). In order validating the modelling results, such transitions have been fabricated on a 20 µm-thick BCB (Benzocyclobutene resin) substrate using grounding pads including via-holes of different diameters. The study focuses on the impact of the via-hole design on the performance of the transition and more specifically on its bandwidth. The transitions were made using a simple technological process based on photosensitive polymer. ADS simulation data of the new equivalent circuit model were in very good agreement with measured S-parameters. Both theoretical and experimental results show that the bandwidth of such a transition can reach up to 100 GHz bandwidth using via-holes of 900 µm diameter.

Citation


Pierre-Vincent Dugue, Mohammed El-Gibari, Mathieu Halbwax, Stephane Ginestar, Vanessa Avramovic, Jean-Pierre Vilcot, and Hongwu Li, "A New Equivalent Circuit Scheme for Grounded Back-to-Back GCPW-MS-GCPW Transitions Fabricated on a Thin Low-k Substrate," Progress In Electromagnetics Research Letters, Vol. 95, 33-42, 2021.
doi:10.2528/PIERL20093003
http://test.jpier.org/PIERL/pier.php?paper=20093003

References


    1. Larson, L., "RF and microwave hardware challenges for future radio spectrum access," Proc. IEEE, Vol. 102, No. 3, 321-333, Mar. 2014.
    doi:10.1109/JPROC.2014.2298231

    2. Sain, A. and K. L. Melde, "Impact of Ground via placement in grounded coplanar waveguide interconnects," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 1, 136-144, Jan. 2016.
    doi:10.1109/TCPMT.2015.2507121

    3. Xu, J., C. Sun, B. Xiong, and Y. Luo, "Resonance suppression of grounded coplanar waveguide in submount for 40 Gb/s optoelectronic modules," J. Infrared Millim. Terahertz Waves, Vol. 30, No. 2, 103-108, Feb. 2009.
    doi:10.1007/s10762-008-9442-x

    4. Zhou, Z. and K. L. Melde, "Development of a broadband coplanar waveguide-to-microstrip transition with vias," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 861-872, Nov. 2008.
    doi:10.1109/TADVP.2008.924254

    5. Lee, M., H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science, Vol. 298, 1401-1403, Dec. 2002.
    doi:10.1126/science.1077446

    6. Goldfarb, M. E. and R. A. Pucel, "Modeling via hole grounds in microstrip," IEEE Microw. Guid. Wave Lett., Vol. 1, No. 6, 135-137, Jun. 1991.
    doi:10.1109/75.91090

    7. CYCLOTENE 4000 series — Kayaku advanced materials,.

    8. Kondo, K., U. Suzuki, T. Saito, N. Okamoto, and M. Marunaka, "High-aspect ratio copper-via filling for three dimensional chip stacking," 59th Electronic Components and Technology Conference, 658-662, 2009.

    9. Lin, C.-L., P.-S. Chen, Y.-C. Lin, B.-Y. Tsui, and M.-C. Chen, "Via-filling capability of copper film by CVD," J. Electrochem. Soc., Vol. 150, No. 7, C451, May 2003.
    doi:10.1149/1.1575739

    10. Wu, B., A. Kumar, and S. Pamarthy, "High aspect ratio silicon etch: A review," J. Appl. Phys., Vol. 108, No. 5, 051101, Sept. 2010.
    doi:10.1063/1.3474652

    11. McKerricher, G., J. G. Perez, and A. Shamim, "Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias," IEEE Trans. Electron Devices, Vol. 62, No. 3, 1002-1009, Mar. 2015.
    doi:10.1109/TED.2015.2396004

    12. Josell, D., B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, "Via filling by electrodeposition: Superconformal silver and copper and conformal nickel," J. Electrochem. Soc., Vol. 149, No. 12, C637, Oct. 2002.
    doi:10.1149/1.1517583

    13. Luhn, O., C. A. Van Hoof, W. Ruythooren, and J.-P. Celis, "Filling of microvia with an aspect ratio of 5 by copper electrodeposition," Electrochimica Acta, Vol. 54, No. 9, 2504-2508, Mar. 2009.
    doi:10.1016/j.electacta.2008.04.002

    14. Wiatr, W., D. K. Walker, and D. F. Williams, "Coplanar-waveguide-to-microstrip transition model," 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), Vol. 3, 1797-1800, 2000.
    doi:10.1109/MWSYM.2000.862328