The recent growth of terahertz (THz) applications has sparked interest in the design of novel electromagnetic structures for this frequency regime. One of the structures is the THz absorber, used in sensing and imaging applications. Metamaterial based designs are commonly used to achieve the desired absorption characteristics. Absorbers whose spectra can be tuned by changing the temperature are a subclass in the broad family of THz absorbers that are used for temperature sensing. In the beginning years, single band temperature tunable absorbers were designed, and at present the focus has shifted to the design of multi-band temperature tunable absorbers. Absorbers with six tunable bands have already been proposed. In this paper an octa-band temperature tunable terahertz metamaterial absorber is proposed, whose unit cell consists of four orthogonally placed tapered triangular structures connected by a ring resonator on top of an InSb dielectric substrate. At 210K it is observed that the structure's absorption spectra are: 98.7% at 1.026 THz, 79.5% at 1.245 THz, 90.4% at 1.301 THz, 95.2% at 1.442 THz, 97.44% at 1.585 THz, 96.4% at 1.644 THz, 97.1% at 1.756 THz, and 90.4% at 2.071 THz. The temperature sensitivities of the proposed structure in eight of its absorption bands are 10.3 GHz/K, 8.22 GHz/K, 7.96 GHz/K, 7.02 GHz/K, 6.44 GHz/K, 6.17 GHz/K, 5.5 GHz/K, and 3.2 GHz/K, respectively. Thus, the proposed design can have practical applications in terahertz temperature sensing applications.
2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Uspekhi Fizicheskikh Nauk, Vol. 10, No. 4, 509-514, 1968.
3. Grant, J., I. J. H. Mccrindle, and D. R. S. Cumming, "Multi-spectral materials: Hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber," Optics Express, Vol. 24, 3451-3463, 2016.
doi:10.1364/OE.24.003451
4. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Application of Negative Refractive Index Materials, CRC Press, Boca Raton, 2008.
doi:10.1201/9781420068764
5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physics Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
6. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, Mar. 2002.
doi:10.1109/22.989974
7. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3
8. Yen, T. J., et al., "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025
9. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273
10. He, X. Y., X. Zhong, F. T. Lin, and W. Z. Shi, "Investigation of graphene assisted tunable terahertz metamaterials absorber," Optic Materials Express, Vol. 6, No. 2, 331-342, 2016.
doi:10.1364/OME.6.000331
11. Xiong, H., Q. Ji, T. Bashir, and F. Yang, "Dual-controlled broadband terahertz absorber based on graphene and dirac semimetal," Optics Express, Vol. 28, No. 9, 13884-13894, 2020.
doi:10.1364/OE.392380
12. Hu, F., et al., "Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array," Journal of Optics, Vol. 15, No. 5, 055-101, 2013.
doi:10.1088/2040-8978/15/5/055101
13. Wang, B. X., X. Zhai, G. Z.Wang, W. Q. Huang, and L. L.Wang, "Frequency tunable metamaterial absorber at deep-subwavelength scale," Optic Materials Express, Vol. 5, 227-235, 2015.
doi:10.1364/OME.5.000227
14. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, 2016.
doi:10.1109/MAP.2016.2609818
15. Wang, B. X. and G. Z. Wang, "Temperature tunable metamaterial absorber at THz frequencies," Journal of Materials Science: Materials in Electronics, Vol. 28, No. 12, 1-7, 2017.
16. Song, Z. Y., K. Wang, J. W. Li, and Q. H. Liu, "Broadband tunable terahertz absorber based on vanadium dioxide metamaterials," Optics Express, Vol. 26, No. 6, 7148-7154, 2018.
doi:10.1364/OE.26.007148
17. Oszwalldowki, M. and M. Zimpel, "Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb," Journal of Physics and Chemistry of Solids, Vol. 49, 1179-1185, 1988.
doi:10.1016/0022-3697(88)90173-4
18. Li, Z. Z., C. Y. Luo, G. Yao, J. Yue, J. Ji, J. Q. Yao, and F. R. Ling, "Design of a concise and dual-band tunable metamaterial absorber," Chinese Optics Letters, Vol. 14, No. 10, 102303, 2016.
doi:10.3788/COL201614.102303
19. Li, W., D. Kuang, F. Fan, S. Chang, and L. Lin, "Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure," Applied Optics, Vol. 51, No. 21, 7098-7102, 2012.
doi:10.1364/AO.51.007098
20. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002
21. Verma, V. K., et al., "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020.
doi:10.1007/s11468-019-01010-y