Vol. 96

Latest Volume
All Volumes
All Issues
2021-01-22

Surface Mountable Compact Printed Dipole Antenna for GPS/WiMAX Applications

By Hitesh Patel and Trushit K. Upadhyaya
Progress In Electromagnetics Research Letters, Vol. 96, 7-15, 2021
doi:10.2528/PIERL20121204

Abstract

A low-profile, electrically compact, and cost-effective antenna for wireless communication is presented. The antenna comprises self-complementary dipole elements on each side of the resonator surface. The dipole is excited using co-axial feed for an efficient impedance matching. An electrically compact antenna has dimensions of 0.13λ × 0.26λ at the lower frequency. The dipole covers 1.57 GHz and 3.65 GHz frequencies offering the measured impedance bandwidth in the order of 1.83% and 2.30% respectively. The self-complementary structure of the dipole having multiple coupling elements permits adequate tuning of the antenna on target frequencies. The resonant modes of the antenna can be tuned by merely modifying the position of the complementary structure on each side of the dipole. The engineered slots in the dipole permit further fine-tuning. The antenna presents gain in the order of 0.71 dBi and 1.27 dBi and stable radiation patterns for the two frequencies.

Citation


Hitesh Patel and Trushit K. Upadhyaya, "Surface Mountable Compact Printed Dipole Antenna for GPS/WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 96, 7-15, 2021.
doi:10.2528/PIERL20121204
http://test.jpier.org/PIERL/pier.php?paper=20121204

References


    1. Takeshore, K., S. Singh, C. Sairam, and S. D. Ahirwar, "Design of asymmetric wideband printed dipole antenna using inset feeding technique," Progress In Electromagnetics Research C, Vol. 96, 87-96, 2019.
    doi:10.2528/PIERC19081402

    2. Kedze, K. E., H. Wang, S. X. Ta, and I. Park, "Wideband low-profile printed dipole antenna incorporated with folded strips and corner-cut parasitic patches above the ground plane," IEEE Access, Vol. 7, 15537-15546, 2019.
    doi:10.1109/ACCESS.2019.2894812

    3. Singh, A., J. Meena, N. Baghel, and S. Mukherje, "Design of printed dipole antenna for enhanced coverage efficiency," 2020 URSI Regional Conference on Radio Science (URSI-RCRS), 1-6, IEEE, February 2020.

    4. Ma, T. G. and S. K. Jeng, "A printed dipole antenna with tapered slot feed for ultrawide-band applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3833-3836, 2005.
    doi:10.1109/TAP.2005.858819

    5. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "“Wideband shorted patch antenna under radiation of dual-resonant modes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2789-2796, 2017.
    doi:10.1109/TAP.2017.2688802

    6. Qu, S. W., J. L. Li, Q. Xue, and C. H. Chan, "Wideband periodic endfire antenna with bowtie dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 314-317, 2008.

    7. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, 2017.

    8. Patel, U. P. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
    doi:10.2528/PIERM18121502

    9. Kishore, N., A. Prakash, and V. S. Tripathi, "A reconfigurable ultra wide band antenna with defected ground structure for ITS application," AEU-International Journal of Electronics and Communications, Vol. 72, 210-215, 2017.
    doi:10.1016/j.aeue.2016.12.009

    10. Singhal, S. and A. K. Singh, "Asymmetrically CPW-fed hourglass shaped UWB monopole antenna with defected ground plane," Wireless Personal Communications, Vol. 94, No. 3, 1685-1699, 2017.
    doi:10.1007/s11277-016-3706-x

    11. Zeng, J. and K. M. Luk, "A simple wideband magnetoelectric dipole antenna with a defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1497-1500, 2018.
    doi:10.1109/LAWP.2018.2850890

    12. Upadhyaya, T. K., A. Desai, and R. H. Patel, "Design of printed monopole antenna for wireless energy meter and smart applications," Progress In Electromagnetics Research Letters, Vol. 77, 27-33, 2018.
    doi:10.2528/PIERL18042203

    13. Tseng, C. F. and C. L. Huang, "A wideband cross monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2464-2468, 2009.
    doi:10.1109/TAP.2009.2024576

    14. Patel, H. and T. K. Upadhyaya, "Printed multiband monopole antenna for smart energy meter/WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 89, 43-51, 2020.
    doi:10.2528/PIERM19121901

    15. Shuai, C. Y. and G. M. Wang, "A novel planar printed dual-band magneto-electric dipoleantenna," IEEE Access, Vol. 5, 10062-10067, 2017.
    doi:10.1109/ACCESS.2017.2712616

    16. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1055-1062, 2017.
    doi:10.1109/TAP.2017.2657486

    17. Upadhyaya, T., A. Desai, R. Patel, U. Patel, K. P. Kaur, and K. Pandya, "Compact transparent conductive oxide based dual band antenna for wireless applications," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 41-45, Singapore, Nov. 19–22, 2017.

    18. Lu, W. J., Q. Li, S. G. Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 4980-4990, 2017.
    doi:10.1109/TAP.2017.2734073

    19. Patel, R., T. Upadhyaya, and A. Desai, "Capacitive couplings compact antenna for LTE/WiMAX/WLAN application," Microwave and Optical Technology Letters, Vol. 60, No. 12, 2977-2983, 2018.
    doi:10.1002/mop.31452

    20. Rezaeieh, S. A. and A. M. Abbosh, "Compact planar loop-dipole composite antenna with director for bandwidth enhancement and back radiation suppression," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3723-3728, 2016.
    doi:10.1109/TAP.2016.2570246

    21. Zahid, M. N., J. Jiang, U. Rafique, and D. Eric, "Modified planar square-loop antenna for electronic article surveillance radio frequency identification applications," Journal of Communications Technology and Electronics, Vol. 65, No. 10, 1161-1166, 2020.
    doi:10.1134/S1064226920100071

    22. Lu, W. J., G. M. Liu, K. F. Tong, and H. B. Zhu, "Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2860-2866, 2014.
    doi:10.1109/TAP.2014.2307343

    23. Rezaeieh, S. A., A. Zamani, K. S. Bialkowski, and A. M. Abbosh, "Unidirectional slot-loaded loop antenna with wideband performance and compact size for congestive heart failure detection," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4557-4562, 2015.
    doi:10.1109/TAP.2015.2457935

    24. Khanjari, S.P., S.Jarchi, and M. Mohammad-Taheri, "Compact andwidebandplanarloop antenna with microstrip to parallel strip balun feed using metamaterials," AEU-International Journal of Electronics and Communications, Vol. 111, 152883, 2019.
    doi:10.1016/j.aeue.2019.152883

    25. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index materialinspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
    doi:10.1117/1.OE.53.10.107104

    26. Kedze, K. E., H. Wang, and I. Park, "Compact broadband omnidirectional radiation pattern printed dipole antenna incorporated with split-ring resonators," IEEE Access, Vol. 6, 49537-49545, 2018.
    doi:10.1109/ACCESS.2018.2868989

    27. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
    doi:10.1017/S175907871400138X

    28. Desai, A. and T. Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.
    doi:10.1002/mop.31474

    29. Geetharamani, G. and T. Aathmanesan, "“A metamaterial inspired tapered patch antenna for WLAN/WiMAX applications," Wireless Personal Communications, 1-13, 2020.

    30. Wang, Y. D., J. H. Lu, and H. M. Hsiao, "Novel design of semi-circular slot antenna with tripleband operation for WLAN/WIMAX communication," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1531-1534, 2008.
    doi:10.1002/mop.23422

    31. Azaro, R., E. Zeni, P. Rocca, and A. Massa, "Innovative design of a planar fractal-shaped GPS/GSM/Wi-Fi antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 825-829, 2008.
    doi:10.1002/mop.23208