Vol. 98

Latest Volume
All Volumes
All Issues
2021-05-30

Gain Enhancement Using Modified Circular Loop FSS Loaded with Slot Antenna for Sub-6 GHz 5G Application

By Anubhav Kumar, Asok De, and Rakesh Kumar Jain
Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021
doi:10.2528/PIERL21031108

Abstract

In this paper, a modified circular loop FSS with a slot antenna is proposed for sub-6 GHz 5G applications. The proposed FSS reduces the resonant frequency to towards lower bands of conventional circular FSS without change in its size. The operating bandwidth (-10 dB) of proposed antenna loaded with polarization insensitive single-layer FSS varies from 3.6 GHz to 6.1 GHz with an average gain of 7-7.5 dB and a maximum realized gain of 7.87 dB. An FSS superstrate is loaded onto a slot antenna to increase the realized gain of 4 dB, where the FSS shows desirable electromagnetic wave reflection characteristics over operating bandwidth and can be used in 5G sub-6 GHz band applications.

Citation


Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Gain Enhancement Using Modified Circular Loop FSS Loaded with Slot Antenna for Sub-6 GHz 5G Application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108
http://test.jpier.org/PIERL/pier.php?paper=21031108

References


    1. Sen, G., A. Banerjee, M. Kumar, and S. Das, "An ultra-wideband monopole antenna with a gain enhanced performance using a novel split-ring meta-surface reflector," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1296-1300, 2017.
    doi:10.1002/mop.30527

    2. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "Gain enhancement of a printed leaf shaped UWB antenna using dual FSS layers and experimental study for ground coupling GPR applications," Microwave and Optical Technology Letters, Vol. 60, No. 6, 1417-1423, 2018.
    doi:10.1002/mop.31171

    3. Chatterjee, A. and S. K. Parui, "Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2233-2239, 2017.
    doi:10.1109/TAP.2017.2677914

    4. Chatterjee, A. and K. P. Susanta, "Gain enhancement of a wide slot antenna using a second-order bandpass frequency selective surface," Radioengineering, Vol. 24, No. 2, 455-461, 2015.
    doi:10.13164/re.2015.0455

    5. Ghosh, A., T. Mandal, and S. Das, "Design of triple band slot-patch antenna with improved gain using triple band artificial magnetic conductor," Radioengineering, Vol. 25, No. 3, 442-448, 2016.
    doi:10.13164/re.2016.0442

    6. Gharsallah, H., L. Osman, and L. Latrach, "Circularly polarized two-layer conical DRA based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1913-1919, 2017.
    doi:10.1002/mop.30650

    7. Belen, M. A., "Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2730-2734, 2018.
    doi:10.1002/mop.31465

    8. Gunes, F., M. A. Belen, and P. Mahouti, "Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 5, 1160-1164, 2018.
    doi:10.1002/mop.31124

    9. Belen, M. A., P. Mahouti, and M. Palandoken, "Design and realization of novel frequency selective surface loaded dielectric resonator antenna via 3D printing technology," Microwave and Optical Technology Letters, Vol. 62, No. 5, 2004-2013, 2020.
    doi:10.1002/mop.32245

    10. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, 2020.

    11. Krishna, R. R. and R. Kumar, "Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation," Electronics Letters, Vol. 51, No. 8, 599-600, 2015.
    doi:10.1049/el.2015.0339

    12. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 219-222, 2011.
    doi:10.1109/LAWP.2011.2130509

    13. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12 , 1448-1453, 2018.
    doi:10.1049/iet-com.2018.0170

    14. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166-175, 1994.
    doi:10.1109/8.277210

    15. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
    doi:10.1049/el:19820201

    16. Varkani, A. R., Z. H. Firouzeh, and A. Z. Nezhad, "Equivalent circuit model for array of circular loop FSS structures at oblique angles of incidence," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 749-755, 2017.
    doi:10.1049/iet-map.2017.1004

    17. Das, P. and K. Mandal, "Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 269-277, 2019.
    doi:10.1049/iet-map.2018.5426