Vol. 99

Latest Volume
All Volumes
All Issues
2021-08-21

Topological Optimization Method for Ship Detection in SAR Images

By Dianqi Pei and Meng Yang
Progress In Electromagnetics Research Letters, Vol. 99, 153-157, 2021
doi:10.2528/PIERL21042903

Abstract

The aim of this study is to provide a topological optimization method for ship detection in synthetic aperture radar (SAR) imagery. The method consists of three steps: pre-processing, sparse representation and classification. For the first step, the variational model is used for SAR image filtering. For the second step, the curvature of the surface manifold is constructed for sparse representation of target. For the third step, the topological derivative method is adopted to locate the target. Experiments show that the proposed method is effective in reducing false alarms, and obtains a satisfactory detection performance.

Citation


Dianqi Pei and Meng Yang, "Topological Optimization Method for Ship Detection in SAR Images," Progress In Electromagnetics Research Letters, Vol. 99, 153-157, 2021.
doi:10.2528/PIERL21042903
http://test.jpier.org/PIERL/pier.php?paper=21042903

References


    1. Chen, S., X. Cui, X. Wang, and S. Xiao, "Speckle-free SAR image ship detection," IEEE Trans. Image Process., Vol. 31, 5969-5983, 2021.
    doi:10.1109/TIP.2021.3089936

    2. Pu, W., "Deep SAR imaging and motion compensation," IEEE Trans. Image Process., Vol. 30, 2232-2247, 2021.
    doi:10.1109/TIP.2021.3051484

    3. Pu, W., "Shuffle GAN with autoencoder: A deep learning approach to separate moving and stationary targets in SAR imagery," IEEE Trans. Neural Networks and Learning Systems (Early Access), No. 1, 2021.

    4. Lang, H., Y. Xi, and X. Zhang, "Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor," IEEE Trans. Geosci. Remote Sens., Vol. 57, No. 8, 5407-5423, 2019.
    doi:10.1109/TGRS.2019.2899337

    5. Wang, X., Y. He, G. Li, and A. Plaza, "Adaptive superpixel segmentation of marine SAR images by aggregating Fisher vectors," IEEE J. Sel. Topics Appl. Earth Observ, Vol. 14, 2058-2069, 2021.
    doi:10.1109/JSTARS.2021.3051301

    6. Cui, X., Y. Su, and S. Chen, "A saliency detector for polarimetric SAR ship detection using similarity test," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 12, No. 9, 3423-3433, 2019.
    doi:10.1109/JSTARS.2019.2925833

    7. Liu, T., Z. Yang, A. Marino, G. Gao, and J. Yang, "Robust CFAR detector based on truncated statistics for polarimetric synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 58, No. 9, 6731-6747, 2020.
    doi:10.1109/TGRS.2020.2979252

    8. Liu, T., Z. Yang, J. Yang, and G. Gao, "CFAR ship detection methods using compact polarimetric SAR in a k-wishart distribution," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 12, No. 10, 3737-3745, 2019.
    doi:10.1109/JSTARS.2019.2923009

    9. Zefreh, R., M. Taban, M. Naghsh, and S. Gazor, "Robust CFAR detector based on censored harmonic averaging in heterogeneous clutter," IEEE Trans. Aeronaut. Navig. Electron., Vol. 57, No. 3, 1956-1963, 2021.
    doi:10.1109/TAES.2020.3046050

    10. Xu, Z., C. Fan, S. Cheng, J. Wang, and X. Huang, "A distribution independent ship detector for PolSAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 14, 3774-3786, 2021.
    doi:10.1109/JSTARS.2021.3068843

    11. Larrabide, I., R. Feijoo, A. Novotny, and E. Taroco, "Topological derivative: A tool for image processing," Comput. Struct., Vol. 86, No. 13, 1386-1403, 2008.
    doi:10.1016/j.compstruc.2007.05.004

    12. Gao, G., Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Springer, Singapore, 2019.
    doi:10.1007/978-981-13-1020-1