Vol. 98

Latest Volume
All Volumes
All Issues
2021-06-22

A Low-F/D Wideband Transmitarray Antenna

By Yan-Fang Liu, Lin Peng, Bo Wang, Wei-Sheng Yu, Tian-Cheng Zheng, and Xing Jiang
Progress In Electromagnetics Research Letters, Vol. 98, 95-103, 2021
doi:10.2528/PIERL21051203

Abstract

In this paper, a wide 3-dB gain bandwidth transmitarray (TA) antenna with low focal length to diameter ratio (F/D) is presented. The TA comprises four identical metasurface layers, and the metasurfaces are printed on thin dielectric substrates, which are separated by air gaps. The unit cells of the metasurfaces are constructed by etching slots on the metal layers, which include a serrated crevice and two disjunct slots. The F/D of the TA is designed as 0.48 to accommodate the applications required low profiles. A TA is constructed by arranging high transmission elements at the center and the other elements in the external of the aperture. A transmitarray antenna (TAA) operating at 9~13 GHz is designed by applying a horn antenna to the TA, which achieves a measured 1-dB gain bandwidth of 10.5% (3-dB gain bandwidth of 23.3% and measured maximum gain of 22.48 dBi at 10.5 GHz) and a maximum measured aperture efficiency of 38.4%. Compared to the reported works, the proposed TA has outstanding F/D and wide 3-dB gain bandwidth.

Citation


Yan-Fang Liu, Lin Peng, Bo Wang, Wei-Sheng Yu, Tian-Cheng Zheng, and Xing Jiang, "A Low-F/D Wideband Transmitarray Antenna," Progress In Electromagnetics Research Letters, Vol. 98, 95-103, 2021.
doi:10.2528/PIERL21051203
http://test.jpier.org/PIERL/pier.php?paper=21051203

References


    1. Federici, J. F., B. Schulkin, and F. Huang, "THz imaging and sensing for security," Semicond. Sci. Technol., Vol. 20, No. 7, S266-S280, 2005.
    doi:10.1088/0268-1242/20/7/018

    2. Song, H. J. and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol., Vol. 1, No. 1, 256-263, Sep. 2011.
    doi:10.1109/TTHZ.2011.2159552

    3. Yang, X., Y. Zhou, L. Xing, and Y. Zhao, "A wideband and low-profile transmitarray antenna using different types of unit-cells," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1584-1589, 2019.
    doi:10.1002/mop.31754

    4. Menzel, W., D. Pilz, and M. Al-Tikriti, "Millimeter-wave folded reflector antennas with high gain, low loss, and low profile," IEEE Antennas Propag. Mag., Vol. 44, No. 3, 24-29, Jun. 2002.
    doi:10.1109/MAP.2002.1028731

    5. Rahmati, B. and H. R. Hassan, "Low-profile slot transmitarray antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 174-181, Jan. 2015.
    doi:10.1109/TAP.2014.2368576

    6. Ramazannia Tuloti, S. H., P. Rezaei, and F. Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 817-820, May 2018.
    doi:10.1109/LAWP.2018.2817363

    7. Abdelrahman, A. H., P. Nayeri, A. Z. Elsherbeni, and F. Yang, "Bandwidth improvement methods of transmitarray antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2946-2954, Jul. 2015.
    doi:10.1109/TAP.2015.2423706

    8. Liu, G., H. Wang, J. Jiang, F. Xue, and M. Yi, "A high-efficiency transmitarray antenna using double split ring slot elements," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1415-1418, 2015.
    doi:10.1109/LAWP.2015.2409474

    9. Liu, S. L., X. Q. Lin, Z. Q. Yang, Y. J. Chen, and J. W. Yu, "W-band low-profile transmitarray antenna using different types of FSS units," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4613-4619, Sept. 2018.
    doi:10.1109/TAP.2018.2851372

    10. Yi, H., S. W. Qu, and C. H. Chan, "Low-cost two-layer terahertz transmitarray," Electron. Lett., Vol. 53, No. 12, 789-791, Jun. 2017.
    doi:10.1049/el.2017.1024

    11. Wu, G., S. Qu, and S. Yang, "Low-profile transmitarray antenna with cassegrain reflectarray feed," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3079-3088, May 2019.
    doi:10.1109/TAP.2019.2899029

    12. Liu, X., et al., "Ultra-broadband all dielectric transmitarray designing based on genetic algorithm optimization and 3D print technology," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 2003-2012, 2020.
    doi:10.1109/TAP.2020.3026922

    13. Abdelrahman, A., H. A. Z. Elsherbeni, and F. Yang, "High gain and broad-band transmitarray antenna using triple-layer spiral dipole elements," IEEE Antennas Wireless Propag., Vol. 13, 1288-1291, Jul. 2014.

    14. Ryan, C. G. M., et al., "A wideband transmitarray using dual-resonant double square rings," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1486-1493, May 2010.
    doi:10.1109/TAP.2010.2044356

    15. Gao, S. S., S Sun, J. L. Li, and T. Yan, "Compact dual-mode dual-band bandpass filter with inside-outside-reversed dual-ring topology," Electron. Lett., Vol. 53, No. 9, 624-626, Apr. 2017.
    doi:10.1049/el.2017.0580

    16. Abdelrahman, A. H., A. Z. Elsherbeni, and F. Yang, "Transmitarray antenna design using cross slot elements with no dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 13, 177-180, 2014.
    doi:10.1109/LAWP.2014.2298851

    17. Tian, C., Y. Jiao, and G. Zhao, "Circularly polarized transmitarray antenna using low-profile dual-linearly polarized elements," IEEE Antennas Wireless Propag. Lett., Vol. 16, 465-468, 2017.
    doi:10.1109/LAWP.2016.2583486

    18. Gao, S. S. and S. Sun, "Synthesis of wideband parallel-coupled line bandpass filters with non-equiripple responses," IEEE Microw. Wireless Components Lett., Vol. 24, No. 9, 587-589, Sept. 2014.
    doi:10.1109/LMWC.2014.2332065

    19. Cai, Y., et al., "Dual-band circularly polarized transmitarray with single linearly polarized feed," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 5015-5020, Jun. 2020.
    doi:10.1109/TAP.2019.2963594