Vol. 98

Latest Volume
All Volumes
All Issues
2021-06-24

Plastronic Circular Line Matched Dipole Antenna

By Gildas Bengloan, Anne Chousseaud, Bruno Froppier, Jacques Girard, Marc Brunet, and Eduardo Motta Cruz
Progress In Electromagnetics Research Letters, Vol. 98, 113-120, 2021
doi:10.2528/PIERL21051205

Abstract

A compact 3-D, circular line matched dipole (CLMD) antenna is presented in this paper. The realization of the antenna is based on Laser Direct Structuring (LDS) plastronic technology, enabling metallization on plastic parts. Cylindrical holder is chosen to carry the dipole, which implies high bending constraints on the antenna. Miniaturization of the radiating element is obtained by an effective use of 3-D space, resulting in a very low profile length dimensions of 0.14λ × 0.14λ × 0.05λ operating at 868 MHz. Specific attention is paid to the input impedance change due to conformation. An equivalent circuit model is proposed to take into account the conformation and design the matching line. Both simulated and measured results demonstrate good performances, with a 30 MHz bandwidth (i.e., a relative bandwidth of 3.5% with S11 < -10 dB) around the working frequency. The LDS prototype achieves a maximum gain of 1.2 dBi with a quasi-omnidirectional radiation pattern. This compact and conformed design presents a real interest for pervasive highly integrated ISM band IoT sensors.

Citation


Gildas Bengloan, Anne Chousseaud, Bruno Froppier, Jacques Girard, Marc Brunet, and Eduardo Motta Cruz, "Plastronic Circular Line Matched Dipole Antenna," Progress In Electromagnetics Research Letters, Vol. 98, 113-120, 2021.
doi:10.2528/PIERL21051205
http://test.jpier.org/PIERL/pier.php?paper=21051205

References


    1. Marrocco, G., "Gain-optimized self-resonant meander line antennas for RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 302-305, 2003.
    doi:10.1109/LAWP.2003.822198

    2. Best, G. R. and J. D. Morrow, "On the significance of current vector alignment in establishing the resonant frequency of small space-filling wire antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 201-204, 2003.
    doi:10.1109/LAWP.2003.819686

    3. Volakis, J., et al., Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill, 2010.

    4. Mosallei, H. and K. Sarab, "Engineered meta-substrates for antenna miniaturization," Proc. 2004 URSI Int. Symposium on Electromagn. Theory, 191-193, 2004.

    5. Best, G. R. and J. M. MCGinthy, "A comparison of electrically small HF antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 37-40, 2005.
    doi:10.1109/APS.2005.1551474

    6. Kumar, H., et al., "A wristwatch-based wireless sensor platform for IoT health monitoring applications," Sensors, Vol. 20, 1675-1680, 2020.
    doi:10.3390/s20061675

    7. Cihangir, A., et al., "Antenna solutions for 4G smartphones in laser direct structuring technology," Radioengineering, Vol. 25, 419-428, 2016.
    doi:10.13164/re.2016.0419

    8. Sonnerat, F., et al., "Innovative 4G mobile phone LDS antenna module using plastronics integration scheme," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013.

    9. Ahmed, S., F. Tahir, A. Shamim, and H. Cheema, "A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
    doi:10.1109/LAWP.2015.2424681

    10. Wu, K., J. Sun, and G. Chen, "Flexible printed circuit board (FPC) antennas for mobile phone operation," 5th International Microsystems Packaging Assembly and Circuits Technology Conference, 1-4, 2010.

    11. Tang, C., "Input impedance of arc antennas and short helical radiators," IEEE Transactions on Antennas and Propagation, Vol. 1, 2-9, 1964.
    doi:10.1109/TAP.1964.1138164

    12. Arumugam, D., et al., "The effect of curvature on the performance and readability of passive UFH RFID tags," ACES Journal, 2010.

    13. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.

    14. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas and Propagation Magazine, Vol. 50, 66-79, 2008.
    doi:10.1109/MAP.2008.4494504

    15. Wang, S., et al., "A novel reversed T-match antenna with compact size and low profile for ultrawideband applications," IEEE Transactions on Antennas and Propagation, Vol. 60, 4933-4937, 2012.
    doi:10.1109/TAP.2012.2207360

    16. Gao, X., et al., "Conformal VHF log-periodic balloon antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, 2756-2761, 2015.
    doi:10.1109/TAP.2015.2414478

    17. Marchand, N., "Transmission line conversion transformers," Electronics, Vol. 17, 142-145, 1944.

    18. Trifunovic, V. and B. Jokanovic, "Review of printed Marchand and double Y baluns: Characteristics and application," IEEE Trans. Microwave Theory Tech., Vol. 42, 1454-1462, 1994.
    doi:10.1109/22.297806

    19. Anagnostou, D. E., et al., "A 0–55-GHz coplanar waveguide to coplanar strip transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1-6, 2008.
    doi:10.1109/TMTT.2007.911909

    20. Chiou, H.-K., C.-Y. Chang, and H.-H. Lin, "Balun design for uniplanar broad band double balanced mixer," Electronics Letters, Vol. 31, 2113-2114, 1995.
    doi:10.1049/el:19951404

    21. King, R. W. P, The Theory of Linear Antennas, Harvard University Press, 1956.
    doi:10.4159/harvard.9780674182189

    22. DeMarinis, J., "The antenna cable as a source of error in EMI measurements," IEEE 1988 International Symposium on Electromagnetic Compatibility, 1988.