An innovative negative group delay (NGD) circuit topology based on asymmetric coplanar striplines (ACPSs) and double-sided parallel striplines (DSPSs) is proposed. The original NGD circuit topology consists of two sections of ACPS, one section of open-circuited DSPSs, a connecting hole, and a group of grounding holes. The NGD characteristic is achieved by the open-circuited DSPS combined with the connecting hole. To verify the proposed NGD circuit topology, a prototype is designed, fabricated, and measured. From the measured results, an NGD time of -2.42 ns at the center frequency of 1.577 GHz is obtained with an NGD bandwidth of 36 MHz (1.561-1.597 GHz). The insertion loss is less than 4.75 dB with the return loss larger than 11.7 dB in the NGD band.
2. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808
3. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1109/TMTT.2010.2045576
4. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-foster elements synthesized by negative-group-delay networks," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1109/TAP.2015.2408364
5. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/ACCESS.2020.2977100
6. He, L., W. Li, J. Hu, and Y. Xu, "A 24-GHz source-degenerated tunable delay shifter with negative group delay compensation," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 8, 687-689, Aug. 2018.
doi:10.1109/LMWC.2018.2843290
7. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254
8. Xiao, J. K., Q. F. Wang, and J. G. Ma, "Matched NGD circuit with resistor-connected coupled lines," Electron. Lett., Vol. 55, No. 16, 903-905, Aug. 2019.
doi:10.1049/el.2019.1277
9. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, Nov. 2017.
10. Ravelo, B., "Theory of coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 11, 3604-3611, 2016.
doi:10.1109/TMTT.2016.2604316
11. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis using finite unloaded quality factor resonators," ” Progress In Electromagnetics Research, Vol. 156, 55-62, 2016.
doi:10.2528/PIER16041111
12. Ravelo, B., N. Li, F. Wan, and J. Feng, "Design, modeling and synthesis of negative group delay IL-shape topology," IEEE Access, Vol. 7, 153900-153909, Oct. 2019.
13. Wan, F., N. Li, B. Ravelo, N. M. Murad, and W. Rahajandraibe, "NGD analysis of turtle-shape microstrip circuit," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 67, No. 11, 2477-2481, Nov. 2020.
doi:10.1109/TCSII.2020.2967892
14. Wan, F., N. Li, B. Ravelo, W. Rahajandraibe, and S. Lallechere, "Design of T shape stub based negative group delay circuit," IEEE Des. Test, Vol. 38, No. 2, 78-88, Apr. 2021.
doi:10.1109/MDAT.2020.3002149
15. Ravelo, B., F. Wan, N. Li, Z. Xu, P. Thakur, and A. Thakur, "Diakoptics modelling applied to flying bird-shape NGD microstrip circuit," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 68, No. 2, 637-641, Feb. 2021.
doi:10.1109/TCSII.2020.3012959
16. Kim, S.-G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 9, 2148-2152, Sept. 2010.
doi:10.1109/TMTT.2004.834165