This paper proposes two low divergence angle orbital angular momentum (OAM) Fabry-Perot (F-P) antennas with nonuniform superstrates. There are two steps to design the proposed two F-P antennas. First, two primary array antennas (a slot array antenna and a patch array antenna) are designed. Both antennas can generate OAM vortex beams with a mode of -1. Second, two F-P resonator cavity antennas are formed by loading a nonuniform partially reflective surfaces (PRS) superstrates above the two primary antennas in order to increase the antenna gain and reduce the divergence angle. The PRS is designed non-uniform for increasing the aperture efficiency. The measured results indicate that the F-P OAM antennas can obviously improve the performance of primary OAM antennas: (1) for the slot array antenna, the divergence angle reduces from 27° to 18°, and the maximum gain increases from 5.2 dBi to 7.5 dBi; (2) for the patch array antenna, the divergence angle decreases from 30° to 18°, and the peak gain increases from 3.4 dBi to 7.2 dBi.
2. Hell, S. W., "Toward fluorescence nanoscopy," Nature Biotechnol., Vol. 21, 1347-1355, Oct. 2003.
3. Harwit, M., "Photon orbital angular momentum in astrophysics," Astrophys. J., Vol. 597, 1266-1270, Nov. 2003.
4. Leach, J., B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, "Quantum correlations in optical angle-orbital angular momentum variables," Science, Vol. 329, 662-665, Aug. 2010.
doi:10.1126/science.1190523
5. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, Art. no. 153901, Apr. 2005.
6. Shapiro, J., S. Guha, and B. Erkmen, "Ultimate channel capacity of free-space optical communications," J. Opt. Netw., Vol. 4, No. 8, 501-516, 2005.
doi:10.1364/JON.4.000501
7. Wang, J., J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photon., Vol. 6, 488-496, Jun. 2012.
doi:10.1038/nphoton.2012.138
8. Bai, X., X. Liang, R. Jin, and J. Geng, "Generation of OAM radio waves with three polarizations using circular horn antenna array," Proc. 9th Eur. Conf. Antennas Propag. (EuCAP), 1-4, Apr. 2015.
9. Hui, X., et al., "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431
10. Byun, W.-J., Y.-S. Lee, B. S. Kim, K. S. Kim, M. S. Kang, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
doi:10.1049/el.2015.1833
11. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased arrayfor generating OAM radio beams," Electron. Lett., Vol. 50, No. 20, 1414-1415, Sep. 2014.
doi:10.1049/el.2014.2860
12. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001
13. Yan, Y., et al., "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876
14. Xue, W., X. Chen, X. Liu, X. Meng, A. Zhang, and W. E. I. Sha, "A revisit of orbital angular momentum multiplexing in multipath environment," Journal of Communications and Information Networks, Vol. 5, No. 4, 438-446, Dec. 2020.
15. Huang, H.-F. and S.-N. Li, "Single-layer dual-frequency unit for multifunction OAM reflectarray applications at the microwave range," Opt. Lett., Vol. 45, No. 18, 5165-5168, 2020.
doi:10.1364/OL.398463
16. Li, W., L. Zhang, S. Yang, K. Zhuo, L. Ye, and Q. H. Liu, "A reconfigurable second-order OAM patch antenna with simple structure," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1531-1535, Sep. 2020.
doi:10.1109/LAWP.2020.3008447
17. Allen, B., et al., "Reduction of orbital angular momentum radio beam divergence using a 3D printed planar graded index lenses," Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), 1-3, London, U.K., 2018.
18. Li, F., et al., "Generation and focusing of orbital angular momentum based on polarized reflectarray at microwave frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, 1829-1837, Mar. 2021.
doi:10.1109/TMTT.2020.3040449
19. Wu, G.-B., K. F. Chan, and C. H. Chan, "3-D printed terahertz lens to generate higher-order Bessel beams carrying OAM," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3399-3408, Jun. 2021.
doi:10.1109/TAP.2020.3030915
20. Yao, Y., X. Liang, R. Jin, and J. Geng, "Analysis of focusing orbital angular momentum wave using Fabry-Perot cavity," Journal of Communications and Information Networks, Vol. 4, No. 3, 9-17, Sept. 2019.
21. Bai, X., "Rotman lens-fed Fabry-Perot resonator antennas for generating converged multi-mode OAM beams," IEEE Access, Vol. 7, 105768-105775, 2019.
doi:10.1109/ACCESS.2019.2932199
22. Wei, W. L., K. Mahdjoubi, C. Brousseau, O. Emile, and A. Sharaiha, "Enhancement of directivity of an OAM antenna by using Fabry-Perot cavity," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, 2016.
23. Bai, X., Y. Sun, P. Hu, J. Chen, W. Yan, X. Liang, C. He, J. Geng, and R. Jin, "Improvement on the multi-mode beams divergence of OAM array by using Fabry-Perot cavity," Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2193-2194, IEEE, San Diego, CA, USA, Jul. 2017.
24. Ma, L., C. Chen, L. Zhou, S. Jiang, and H. Zhang, "Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity," Appl. Phys. Lett., Vol. 114, No. 8, Art. no. 081603, 2019.
25. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna," IEEE Antennas Wireless. Propag. Lett., Vol. 17, No. 1, 122-125, Jan. 2018.
doi:10.1109/LAWP.2017.2777502