Vol. 99

Latest Volume
All Volumes
All Issues
2021-08-21

A CPW Fed Clown-Shaped Super Wideband Antenna

By Rahul Kumar Garg, Sarthak Singhal, and Raghuvir S. Tomar
Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021
doi:10.2528/PIERL21070502

Abstract

A Clown-shaped patch antenna for super wideband applications is presented. The radiator is placed on a 1.6 mm thick, RT/Duroid 5880 substrate and is fed using a 50 Ω symmetric coplanar waveguide. The size of the proposed antenna is 26 × 27 mm2 (0.256λL × 0.266λL, where λL is the wavelength at the lower band edge frequency i.e. 2.96 GHz). The radiator is a combination of an ellipse, a rectangle, and a triangle. An impedance bandwidth of 2.96 GHz to more than 100 GHz (i.e. more than 33.78:1 ratio bandwidth) is achieved. Nearly-omnidirectional radiation patterns with an average gain of 6 dBi are achieved. A fractional bandwidth greater than 188.5%, a size reduction of ~97%, and a comparable bandwidth dimension ratio of 2768 are achieved. The investigated antenna has additional advantages like compactness, planar geometry, and super-wide bandwidth.

Citation


Rahul Kumar Garg, Sarthak Singhal, and Raghuvir S. Tomar, "A CPW Fed Clown-Shaped Super Wideband Antenna," Progress In Electromagnetics Research Letters, Vol. 99, 159-167, 2021.
doi:10.2528/PIERL21070502
http://test.jpier.org/PIERL/pier.php?paper=21070502

References


    1. Schantz, H. G., "A brief history of UWB antennas," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 4, 22-26, 2004.
    doi:10.1109/MAES.2004.1301770

    2. Wiesbeck, W., G. Adamiuk, and C. Sturm, "Basic properties and design principles of UWB antennas," Proceedings of the IEEE, Vol. 97, No. 2, 372-385, 2009.
    doi:10.1109/JPROC.2008.2008838

    3. Electronic Communications Committee, "The European table of frequency allocations and applications in the frequency range 8.4 kHz to 3000 GHz," European Conf. Postal and Telecommunications Administrations, 132-133, February 2013.

    4. Rao, Q. and W. Geyi, "Compact multi-band antenna for handheld devices," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3337-3339, 2009.
    doi:10.1109/TAP.2009.2029384

    5. Standard, F.C.C., "First-order and report, revision of part 15 of the commission's rules regarding UWB transmission systems,", 2002.

    6. Balani, W., M. Sarvagya, T. Ali, P. M. M. Manohara, and S. Das, "Design techniques of super wideband antenna-existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
    doi:10.1109/ACCESS.2019.2943655

    7. Tran, D., P. Aubry, A. Szilagyi, I. E. Lager, O. Yarovyi, and L. P. Ligthart, "On the design of a super wideband antenna," Ultra Wideband, 399-427, Intech Open Limited, London, U.K., 2010.

    8. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super- wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
    doi:10.1002/mop.24222

    9. Chaudhary, A. K. and M. Manohar, "Design and analysis of a compact wideband monopole patch antenna for future handheld gadgets," Progress In Electromagnetics Research C, Vol. 109, 227-241, 2021.
    doi:10.2528/PIERC20122403

    10. Singhal, S., "Feather-shaped super wideband MIMO antenna," International Journal of Microwave and Wireless Technologies, 1-9, 2020.

    11. Dey, S., Md. S.Are n, and N. C. Karmakar, "Design and experimental analysis of a novel compact and exible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021.
    doi:10.1109/ACCESS.2021.3068082

    12. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, 2021.
    doi:10.3390/s21020477

    13. Hasan, Md R., M. A. Riheen, P. Sekhar, and T. Karacolak, "Compact CPW-fed circular patch exible antenna for super-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 10, 1069-1073, 2020.
    doi:10.1049/iet-map.2020.0155

    14. Yu, C., S. Yang, Y. Chen, W. Wang, L. Zhang, B. Li, and L. Wang, "A super-wideband and high isolation MIMO antenna system using a windmill-shaped decoupling structure," IEEE Access, Vol. 8, 115767-115777, 2020.
    doi:10.1109/ACCESS.2020.3004396

    15. Alluri, S. and N. Rangaswamy, "Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3985-3991, 2020.
    doi:10.1002/mop.32541

    16. Elhabchi, M., M. N. Sri , and R. Touahni, "A novel modi ed U-shaped microstrip antenna for Super Wideband (SWB) applications," Analog Integrated Circuits and Signal Processing, 1-8, 2020.

    17. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
    doi:10.1002/mop.32117

    18. Singhal, S. and A. K. Singh, "Elliptical monopole based super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1324-1328, 2020.
    doi:10.1002/mop.32143

    19. Bhattacharya, A., B. Roy, and A. K. Bhattacharjee, "Compact, isolation enhanced, band- notched SWB-MIMO antenna suited for wireless personal communications," Wireless Personal Communications, 1-18, 2020.

    20. Rahman, S. U., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopole antenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1931-1937, 2019.
    doi:10.1002/mop.31805

    21. Figueroa-Torres, C. A., J. L. Medina-Monroy, H. Lobato-Morales, R. A. Chavez-Perez, and A. Calvillo-Tellez, "A novel fractal antenna based on the Sierpinski structure for super wide-band applications," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1148-1153, 2017.
    doi:10.1002/mop.30489

    22. Singhal, S. and A. K. Singh, "Asymmetrically CPW-fed circle inscribed hexagonal super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2794-2799, 2016.
    doi:10.1002/mop.30156

    23. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region, and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
    doi:10.1049/iet-map.2013.0094

    24. Okas, P., A. Sharma, and R. K. Gangwar, "Circular base loaded modi ed rectangular monopole radiator for super wideband application," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2421-2428, 2017.
    doi:10.1002/mop.30757

    25. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot-loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, 2018.
    doi:10.1016/j.aeue.2018.03.004

    26. Okas, P., A. Sharma, and R. K. Gangwar, "Super-wideband CPW fed modi ed square monopole antenna with stabilized radiation characteristics," Microwave and Optical Technology Letters, Vol. 60, No. 3, 568-575, 2018.
    doi:10.1002/mop.31006

    27. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System Fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, 2011.
    doi:10.1109/TAP.2011.2152322

    28. Kwon, D.-H., "Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultra-wideband antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2208-2215, 2006.
    doi:10.1109/TAP.2006.879189