Vol. 100

Latest Volume
All Volumes
All Issues
2021-10-20

Design and Fabrication of a Liquid Crystal-Based 94 GHz 360° Phase Shifter for Reflectarray Antennas

By Rongxin Mao, Junjie Xu, Xianping Li, Shuangyuan Sun, Xiangxiang Li, Jun Yang, Zhiping Yin, Guangsheng Deng, and Hongbo Lu
Progress In Electromagnetics Research Letters, Vol. 100, 145-150, 2021
doi:10.2528/PIERL21071301

Abstract

In this work, we propose a liquid crystal (LC)-based double-dipole phase shifter. By manipulating the electric field, we change the resonant frequency and phase of the electromagnetic wave by deflecting the orientation of LC molecules. We made the LC-based device with a 30 × 30 array of two parallel unequal dipoles on a Quartz substrate. The substrate has an area and thickness of 4×4 cm2 and 480 μm, respectively. The experimental results show that the phase shift of 0°-385.4° is achieved at 94 GHz by changing the applied bias voltage on the LC layer from 0 V to 8.4 V. The phase shift is greater than 360° in the range 91.75-94.85 GHz. When the LC molecules are most significantly affected by the electric field, the maximum precision of phase shift is 4.08° with a bias voltage of 2 mV.

Citation


Rongxin Mao, Junjie Xu, Xianping Li, Shuangyuan Sun, Xiangxiang Li, Jun Yang, Zhiping Yin, Guangsheng Deng, and Hongbo Lu, "Design and Fabrication of a Liquid Crystal-Based 94 GHz 360° Phase Shifter for Reflectarray Antennas," Progress In Electromagnetics Research Letters, Vol. 100, 145-150, 2021.
doi:10.2528/PIERL21071301
http://test.jpier.org/PIERL/pier.php?paper=21071301

References


    1. Ojaroudiparchin, N., et al., "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1747-1750, 2016.
    doi:10.1109/LAWP.2016.2532607

    2. Ngamjanyaporn, P., M. Krairiksh, and M. Bialkowski, "Combating interference in an indoor wireless-communication system using a phased-array antenna with switched-beam elements," Microwave and Optical Technology Letters, Vol. 45, No. 5, 411-415, Jun. 2005.
    doi:10.1002/mop.20839

    3. Alhalabi, R. A. and G. M. Rebeiz, "High-Efficiency angled-Dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, Oct. 2008.
    doi:10.1109/TAP.2008.929506

    4. Vendik, O. and M. Parnes, "A phase shifter with one tunable component for a re ectarray antenna," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 53-65, Aug. 2008.
    doi:10.1109/MAP.2008.4653662

    5. Mahmoud, K. R., et al., "The performance of circularly polarized phased sub-array antennas for 5G laptop devices investigation the radiation effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, May 2021.
    doi:10.2528/PIERC21012005

    6. Nickel, M., et al., "Ridge gap waveguide based liquid crystal phase shifter," IEEE Access, Vol. 8, 77833-77842, 2020.
    doi:10.1109/ACCESS.2020.2989547

    7. Ren, H., et al., "Compact phased array antenna system based on dual-band operations," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1391-1396, Jun. 2014.
    doi:10.1002/mop.28343

    8. Li, Y. and A. Abbosh, "Electronically controlled phasing element for single-layer recon figurable reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 628-631, 2012.
    doi:10.1109/LAWP.2012.2203290

    9. Shen, Z. X., et al., "Liquid crystal enabled dynamic cloaking of terahertz Fano resonators," Applied Physics Letters, Vol. 114, No. 4, 041106.1-041106.5, Jan. 2019.

    10. Wang, J., et al., "Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial," Optics Express, Vol. 26, No. 5, 5769-5776, Mar. 2018.
    doi:10.1364/OE.26.005769

    11. Perez-Palomino, G., et al., "Design and demonstration of an electronically scanned re ectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.
    doi:10.1109/TAP.2015.2434421

    12. Bildik, S., et al., "Recon gurable folded re ectarray antenna based upon liquid crystal technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 122-132, Jan. 2015.
    doi:10.1109/TAP.2014.2367491

    13. Lin, C. J., et al., "Electrically controlled liquid crystal phase grating for terahertz waves," IEEE Photonics Technology Letters, Vol. 21, No. 9-12, 730-732, May-Jun. 2009.

    14. Luo, C. G., et al., "High-resolution terahertz coded-aperture imaging for near- eld three-dimensional target," Applied Optics, Vol. 58, No. 12, 3293-3330, Apr. 2019.
    doi:10.1364/AO.58.003293

    15. Reese, R., et al., "Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band," IEEE Access, Vol. 7, 127032-127041, 2019.
    doi:10.1109/ACCESS.2019.2939648

    16. Hu, W., et al., "Tunable liquid crystal re ectarray patch element," Electronics Letters, Vol. 42, No. 9, 509-511, Apr. 2006.
    doi:10.1049/el:20060571

    17. Perez-Palomino, G., et al., "Accurate and efficient modeling to calculate the voltage dependence of liquid crystal-based re ectarray cells," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2659-2668, May 2014.
    doi:10.1109/TAP.2014.2308521

    18. Zografopoulos, D. C. and R. Beccherelli, "Tunable terahertz shnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scienti c Reports, Vol. 5, 13137, Aug. 2015.
    doi:10.1038/srep13137

    19. Yang, J., et al., "Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 342-345, Mar. 2021.
    doi:10.1109/LAWP.2021.3049870