In this work, we propose a liquid crystal (LC)-based double-dipole phase shifter. By manipulating the electric field, we change the resonant frequency and phase of the electromagnetic wave by deflecting the orientation of LC molecules. We made the LC-based device with a 30 × 30 array of two parallel unequal dipoles on a Quartz substrate. The substrate has an area and thickness of 4×4 cm2 and 480 μm, respectively. The experimental results show that the phase shift of 0°-385.4° is achieved at 94 GHz by changing the applied bias voltage on the LC layer from 0 V to 8.4 V. The phase shift is greater than 360° in the range 91.75-94.85 GHz. When the LC molecules are most significantly affected by the electric field, the maximum precision of phase shift is 4.08° with a bias voltage of 2 mV.
2. Ngamjanyaporn, P., M. Krairiksh, and M. Bialkowski, "Combating interference in an indoor wireless-communication system using a phased-array antenna with switched-beam elements," Microwave and Optical Technology Letters, Vol. 45, No. 5, 411-415, Jun. 2005.
doi:10.1002/mop.20839
3. Alhalabi, R. A. and G. M. Rebeiz, "High-Efficiency angled-Dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, Oct. 2008.
doi:10.1109/TAP.2008.929506
4. Vendik, O. and M. Parnes, "A phase shifter with one tunable component for a re ectarray antenna," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 53-65, Aug. 2008.
doi:10.1109/MAP.2008.4653662
5. Mahmoud, K. R., et al., "The performance of circularly polarized phased sub-array antennas for 5G laptop devices investigation the radiation effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, May 2021.
doi:10.2528/PIERC21012005
6. Nickel, M., et al., "Ridge gap waveguide based liquid crystal phase shifter," IEEE Access, Vol. 8, 77833-77842, 2020.
doi:10.1109/ACCESS.2020.2989547
7. Ren, H., et al., "Compact phased array antenna system based on dual-band operations," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1391-1396, Jun. 2014.
doi:10.1002/mop.28343
8. Li, Y. and A. Abbosh, "Electronically controlled phasing element for single-layer reconfigurable reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 628-631, 2012.
doi:10.1109/LAWP.2012.2203290
9. Shen, Z. X., et al., "Liquid crystal enabled dynamic cloaking of terahertz Fano resonators," Applied Physics Letters, Vol. 114, No. 4, 041106.1-041106.5, Jan. 2019.
10. Wang, J., et al., "Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial," Optics Express, Vol. 26, No. 5, 5769-5776, Mar. 2018.
doi:10.1364/OE.26.005769
11. Perez-Palomino, G., et al., "Design and demonstration of an electronically scanned re ectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.
doi:10.1109/TAP.2015.2434421
12. Bildik, S., et al., "Recongurable folded re ectarray antenna based upon liquid crystal technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 122-132, Jan. 2015.
doi:10.1109/TAP.2014.2367491
13. Lin, C. J., et al., "Electrically controlled liquid crystal phase grating for terahertz waves," IEEE Photonics Technology Letters, Vol. 21, No. 9-12, 730-732, May-Jun. 2009.
14. Luo, C. G., et al., "High-resolution terahertz coded-aperture imaging for near-eld three-dimensional target," Applied Optics, Vol. 58, No. 12, 3293-3330, Apr. 2019.
doi:10.1364/AO.58.003293
15. Reese, R., et al., "Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band," IEEE Access, Vol. 7, 127032-127041, 2019.
doi:10.1109/ACCESS.2019.2939648
16. Hu, W., et al., "Tunable liquid crystal re ectarray patch element," Electronics Letters, Vol. 42, No. 9, 509-511, Apr. 2006.
doi:10.1049/el:20060571
17. Perez-Palomino, G., et al., "Accurate and efficient modeling to calculate the voltage dependence of liquid crystal-based re ectarray cells," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2659-2668, May 2014.
doi:10.1109/TAP.2014.2308521
18. Zografopoulos, D. C. and R. Beccherelli, "Tunable terahertz shnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scientic Reports, Vol. 5, 13137, Aug. 2015.
doi:10.1038/srep13137
19. Yang, J., et al., "Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 342-345, Mar. 2021.
doi:10.1109/LAWP.2021.3049870