Vol. 100

Latest Volume
All Volumes
All Issues
2021-09-18

Broadband Surface-Mount Dipole Antenna Array Using Highly Isolated via Fence for 5G Millimeter-Wave Applications

By Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu
Progress In Electromagnetics Research Letters, Vol. 100, 27-34, 2021
doi:10.2528/PIERL21071702

Abstract

This letter proposes a 2×2 surface-mount dipole antenna array based on via fence for 5G millimeter-wave applications. The dipole antenna element was first proposed, which has a compact size and low cost. Then the via fences are introduced to reduce coupling between adjacent elements and enhance isolation. In this way, compared with a 1×2 antenna array without the via fence, the isolation of a 1×2 antenna array with a via fence is improved by 12 dB at 26 GHz. The elements are extended into 2×2 arrays with and without the via fence, and their performance is evaluated by the evaluation board. The measurement results show that the -10-dB impedance bandwidth of the antenna array is 19% (24.7-29.9 GHz), and the peak gain is 9.5 dBi at 25 GHz. The proposed 2×2 array can be used in the N257 (26.5-29.5 GHz), N258 (24.25-27.5 GHz), and N261 (27.5-28.35 GHz) frequency bands. Low cost, small size, and high isolation characteristics make it one of the candidates for 5G millimeter-wave applications.

Citation


Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Broadband Surface-Mount Dipole Antenna Array Using Highly Isolated via Fence for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 100, 27-34, 2021.
doi:10.2528/PIERL21071702
http://test.jpier.org/PIERL/pier.php?paper=21071702

References


    1. Andrews, J. G., "What will 5G be," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014, doi: 10.1109/JSAC.2014.2328098.
    doi:10.1109/JSAC.2014.2328098

    2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
    doi:10.1109/ACCESS.2013.2260813

    3. Zhang, J., J. Li, and J. Chen, "Mutual coupling reduction of a circularly polarized four-element antenna array using metamaterial absorber for unmanned vehicles," IEEE Access, Vol. 7, 57469-57475, 2019, doi: 10.1109/ACCESS.2019.2913552.
    doi:10.1109/ACCESS.2019.2913552

    4. Luan, H., C. Chen, W. Chen, L. Zhou, H. Zhang, and Z. Zhang, "Mutual coupling reduction of closely E=H-plane coupled antennas through metasurfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 1996-2000, Oct. 2019, doi: 10.1109/LAWP.2019.2936096.
    doi:10.1109/LAWP.2019.2936096

    5. Shen, X., Y. Liu, L. Zhao, G. Huang, X. Shi, and Q. Huang, "A miniaturized microstrip antenna array at 5G millimeter-wave band," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1671-1675, Aug. 2019, doi: 10.1109/LAWP.2019.2927460.
    doi:10.1109/LAWP.2019.2927460

    6. Exposito-Dominguez, G., J.-M. Fernandez-Gonzalez, P. Padilla, and M. Sierra-Castaner, "Mutual coupling reduction using EBG in steering antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1265-1268, 2012, doi: 10.1109/LAWP.2012.2226013.
    doi:10.1109/LAWP.2012.2226013

    7. Abedin, M. F. and M. Ali, "Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array," IEEE Antennas Wirel. Propag. Lett., Vol. 4, 274-276, 2005, doi: 10.1109/LAWP.2005.854004.
    doi:10.1109/LAWP.2005.854004

    8. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 57-59, 2010, doi: 10.1109/LAWP.2010.2042565.
    doi:10.1109/LAWP.2010.2042565

    9. Dalal, P. and S. K. Dhull, "Design of triple band-notched UWB MIMO/diversity antenna using triple bandgap EBG structure," Progress In Electromagnetics Research C, Vol. 113, 197-209, 2021.
    doi:10.2528/PIERC21050202

    10. Zhang, Y., J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-Wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 4, 747-751, Apr. 2019, doi: 10/ghbsx7.
    doi:10.1109/LAWP.2019.2901961

    11. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1501-1503, 2012, doi: 10.1109/LAWP.2012.2232274.
    doi:10.1109/LAWP.2012.2232274

    12. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-pro le folded split-ring resonators (FSRRs)," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 862-865, 2011, doi: 10.1109/LAWP.2011.2165931.
    doi:10.1109/LAWP.2011.2165931

    13. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2146-2149, 2017, doi: 10.1109/LAWP.2017.2700521.
    doi:10.1109/LAWP.2017.2700521

    14. Xia, R.-L., S.-W. Qu, P.-F. Li, Q. Jiang, and Z.-P. Nie, "An efficient decoupling feeding network for microstrip antenna array," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 871-874, 2015, doi: 10.1109/LAWP.2014.2380786.
    doi:10.1109/LAWP.2014.2380786

    15. Li, M., M. Wang, L. Jiang, and L. K. Yeung, "Decoupling of antennas with adjacent frequency bands using cascaded decoupling network," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 1173-1178, Feb. 2021, doi: 10/gk6nm5.
    doi:10.1109/TAP.2020.3010956

    16. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3101-3108, May 2019, doi: 10/gk6nm7.
    doi:10.1109/TAP.2019.2899039

    17. Zhang, Y. P., "Enrichment of package antenna approach with dual feeds, guard ring, and fences of vias," IEEE Trans. Adv. Packag., Vol. 32, No. 3, 612-618, Aug. 2009, doi: 10.1109/TADVP.2008.2001769.
    doi:10.1109/TADVP.2008.2001769

    18. He, Y. and Y. Li, "Dual-polarized microstrip antennas with capacitive via fence for wide beamwidth and high isolation," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5095-5103, Jul. 2020, doi: 10/gg9xgv.
    doi:10.1109/TAP.2020.2975269