A 37-43 GHz endfire antenna based on ball grid array (BGA) packaging is proposed for the fifth-generation (5G) wireless system. The antenna consists of a miniaturized radiator and reflector. Besides, the radiator is fed by a substrate integrated waveguide (SIW). Furthermore, the RF transition from the SIW to grounded coplanar waveguide (GCPW) and vertical quasi-coaxial is realized on the substrate. The antenna is implemented on a single-layer substrate using standard printed circuit board (PCB) technology to reduce costs. Then, the cost-effective antenna element is reflow soldered with solder balls to form a BGA packaging. The advantages of the BGA packaging and the three-dimensional (3D) integration are discussed in detail. The miniature packaging achieves a compact size of 7 mm × 3.4 mm × 0.6 mm. Finally, a prototype was manufactured to verify the performance. The measurement results show that the proposed antenna is a good candidate for 5G millimeter-wave (mmWave) New Radio (NR) applications.
2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813
3. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888
4. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899
5. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514
6. Zhang, Y., "Antenna-in-package technology: Its early development [historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916
7. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267
8. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412
9. Ali, M., et al., "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 9, 1515-1523, Sep. 2020.
doi:10.1109/TCPMT.2020.3013725
10. Jin, C., V. N. Sekhar, X. Bao, B. Chen, B. Zheng, and R. Li, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1498-1505, Sep. 2013.
doi:10.1109/TCPMT.2013.2261855
11. Choi, J., D. Choi, J. Lee, W. Hwang, and W. Hong, "Adaptive 5G architecture for an mmWave antenna front-end package consisting of tunable matching network and surface-mount technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 12, 2037-2046, Dec. 2020.
doi:10.1109/TCPMT.2020.3034586
12. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized endre planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
doi:10.1109/TAP.2019.2930100
13. Beer, S., H. Gulan, C. Rusch, and T. Zwick, "Coplanar 122-GHz antenna array with air cavity re ector for integration in plastic packages," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 160-163, 2012.
doi:10.1109/LAWP.2012.2186783
14. Beer, S., et al., "An integrated 122-GHz antenna array with wire bond compensation for SMT radar sensors," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 5976-5983, Dec. 2013.
doi:10.1109/TAP.2013.2282708
15. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017.
doi:10.1109/TAP.2017.2722873
16. Gu, X., et al., "Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 7, 2975-2984, Jul. 2019.
doi:10.1109/TMTT.2019.2912819
17. Tsai, C. H., et al., "Fabrication and characterization of millimeter wave 3D InFO dipole antenna array integrated with CMOS front-end circuits," 2019 IEEE International Electron Devices Meeting (IEDM), 25.3.1-25.3.4, Dec. 2019.
doi:10.1109/IEDM19573.2019.8993591
18. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002.
doi:10.1049/el:20020144
19. Zhang, Y. P., "Integrated circuit ceramic ball grid array package antenna," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2538-2544, Oct. 2004.
doi:10.1109/TAP.2004.834427
20. Sun, M., Y. P. Zhang, D. Liu, K. M. Chua, and L. L. Wai, "A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2134-2140, Jun. 2011.
doi:10.1109/TAP.2011.2143669
21. Tong, Z., A. Fischer, A. Stelzer, and L. Maurer, "Radiation performance enhancement of E-band antenna in package," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 11, 1953-1959, Nov. 2013.
doi:10.1109/TCPMT.2013.2272039
22. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/microwave LTCC-SiP module packaging," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 1, 34-36, Jan. 2008.
doi:10.1109/LMWC.2007.911986