Vol. 100

Latest Volume
All Volumes
All Issues
2021-10-23

Highly Flexible Uniplanar Dual-Band Power Divider for Arbitrary Source and Load Impedances

By Rahul Gupta, Maher Assaad, and Mohammad S. Hashmi
Progress In Electromagnetics Research Letters, Vol. 100, 159-167, 2021
doi:10.2528/PIERL21072104

Abstract

In this paper, a dual-band impedance transforming power divider is investigated for all types of impedance environments at its ports, irrespective of the locations of the ports. The intuitive design approach utilizes conventional single-band Wilkinson Power Divider (WPD) architecture to provide the superior dual-band performance with arbitrary port impedances. The proposed power divider also accords a high degree of design flexibility with high frequency ratios (r) and impedance transformation ratios (k). The presented concept is evaluated and verified by design examples and measurements with a fabricated prototype. The agreement between the simulation and measurement results validates the working of the proposed architecture with arbitrary source and load port impedances at two arbitrary design frequencies.

Citation


Rahul Gupta, Maher Assaad, and Mohammad S. Hashmi, "Highly Flexible Uniplanar Dual-Band Power Divider for Arbitrary Source and Load Impedances," Progress In Electromagnetics Research Letters, Vol. 100, 159-167, 2021.
doi:10.2528/PIERL21072104
http://test.jpier.org/PIERL/pier.php?paper=21072104

References


    1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Trans. Microw. Theory Techn., Vol. 8, No. 1, 116-118, Jan. 1960.
    doi:10.1109/TMTT.1960.1124668

    2. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, 2005.

    3. Gupta, R. and M. S. Hashmi, "High impedance transforming simpli ed balun architecture in microstrip technology," Microw. Optical Technol. Lett., Vol. 60, No. 12, 3019-3023, Sept. 2018.
    doi:10.1002/mop.31450

    4. Liao, M., Y. Wu, Y. Liu, and J. Gao, "Impedance-transforming dual-band out-of-phase power divider," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 8, 524-526, 2014.
    doi:10.1109/LMWC.2014.2322755

    5. Yoon, Y., J. Kim, and Y. Kim, "An unequal divider with different terminated impedances and different electrical lengths of four uniform transmission lines," Progress In Electromagnetics Research Letters, Vol. 80, 143-148, 2018.
    doi:10.2528/PIERL18110604

    6. Pakasiri, C. and S. Wang, "Dual-band compact Wilkinson power divider using common inductor and complex load," IEEE Access, Vol. 8, 97189-97195, 2020.
    doi:10.1109/ACCESS.2020.2995405

    7. Maktoomi, M. A. and M. S. Hashmi, "A performance enhanced port extended dual-band Wilkinson power divider," IEEE Access, Vol. 5, 11832-11840, 2017.
    doi:10.1109/ACCESS.2017.2715283

    8. Hallberg, W., M. A. Zen, D. Kuylenstierna, K. Buisman, and C. Fager, "A generalized 3-dB Wilkinson power divider/combiner with complex terminations," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 10, 4497-4506, Oct. 2018.
    doi:10.1109/TMTT.2018.2859305

    9. Maktoomi, M. A., M. S. Hashmi, A. P. Yadav, and V. Kumar, "A generic tri-band matching network," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 316-318, May 2016.
    doi:10.1109/LMWC.2016.2548981

    10. Bei, L., S. Zhang, and K. Huang, "Complex impedance-transformation out-of-phase power divider with high power-handling capability," Progress In Electromagnetics Research Letters, Vol. 53, 13-19, 2015.
    doi:10.2528/PIERL15012006

    11. Li, J., Y. Liu, S. Li, C. Yu, Y. Wu, and M. Su, "A novel multi-way power divider design with arbitrary complex terminated impedances," Progress In Electromagnetics Research B, Vol. 53, 315-331, 2013.
    doi:10.2528/PIERB13061306

    12. Banerjee, D., A. Saxena, and M. S. Hashmi, "A novel concept of virtual impedance for high frequency tri-band impedance matching networks," IEEE Trans. on Cir. and Sys. II, Vol. 65, No. 9, 1184-1188, 2018.

    13. Maktoomi, M. A., M. S. Hashmi, and V. Panwar, "A dual-frequency matching network for FDCLs using dual-band λ/4-lines," Progress In Electromagnetics Research Letters, Vol. 52, 23-30, 2015.
    doi:10.2528/PIERL15020405

    14. Zhang, W., Z. Ning, Y. Wu, C. Yu, S. Li, and Y. Liu, "Dual-band out-of-phase power divider with impedance transformation and wide frequency ratio," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 787-789, Dec. 2015.
    doi:10.1109/LMWC.2015.2496784

    15. Gupta, R., M. S. Hashmi, and M. H. Maktoomi, "An enhanced frequency ratio dual band balun augmented with high impedance transformation," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 67, No. 12, 2973-2977, 2020.
    doi:10.1109/TCSII.2020.2984787

    16. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency- dependent complex load impedance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 611-613, Oct. 2009.

    17. Maktoomi, M. A. and M. S. Hashmi, "A coupled-line based L-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider," Progress In Electromagnetics Research C, Vol. 55, 95-104, 2014.
    doi:10.2528/PIERC14110502

    18. Kumar, M., S. N. Islam, G. Sen, S. K. Parui, and S. Das, "Compact Wilkinson power divider with higher order harmonics suppression for LTE application," Progress In Electromagnetics Research Letters, Vol. 84, 23-29, 2019.
    doi:10.2528/PIERL19021902

    19. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
    doi:10.2528/PIER10110108

    20. Zaidi, A. M., M. T. Beg, B. K. Kanaujia, Mainuddin, and K. Rambabu, "A compact dual-band out of phase power divider having microstrip compatibility," IEEE Trans. Circuits Syst. II: Exp. Briefs, Vol. 67, No. 12, 2998-3002, 2020.
    doi:10.1109/TCSII.2020.2992753