Vol. 100

Latest Volume
All Volumes
All Issues
2021-10-15

Wideband MIMO Antenna with Compact Decoupling Structure for 5G Wireless Communication Applications

By Mohammed M. Bait-Suwailam, Thamer S. Almoneef, and Saud M. Saeed
Progress In Electromagnetics Research Letters, Vol. 100, 117-125, 2021
doi:10.2528/PIERL21080602

Abstract

This letter proposes a two element multiple-input multiple-output (MIMO) antenna with compact decoupling structure for 5G wireless communication applications. A compact decoupling structure was developed based on the elliptic curve, achieving isolation between the two antenna elements with a wideband response. The proposed concept is discussed and verified numerically and experimentally. The MIMO antenna system has demonstrated a wideband impedance matching with high isolation capability, while maintaining a good far-field and MIMO performance.

Citation


Mohammed M. Bait-Suwailam, Thamer S. Almoneef, and Saud M. Saeed, "Wideband MIMO Antenna with Compact Decoupling Structure for 5G Wireless Communication Applications," Progress In Electromagnetics Research Letters, Vol. 100, 117-125, 2021.
doi:10.2528/PIERL21080602
http://test.jpier.org/PIERL/pier.php?paper=21080602

References


    1. Foschini, G. and M. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., Vol. 6, No. 3, 311-335, March 1998.
    doi:10.1023/A:1008889222784

    2. Wallace, J., M. Jensen, A. Swindlehurst, and B. Jeffs, "Experimental characterization of the MIMO wireless channel: Data acquisition and analysis," IEEE Transactions Wireless Commun., Vol. 2, No. 2, 335-343, March 2003.
    doi:10.1109/TWC.2003.808975

    3. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 740-747, September 1983.
    doi:10.1109/TAP.1983.1143124

    4. Kildal, P.-S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 104-112, December 2004.
    doi:10.1109/MCOM.2004.1367562

    5. Zhang, S., B. K. Lau, A. Sunesson, and S. He, "Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4372-4380, September 2012.
    doi:10.1109/TAP.2012.2207049

    6. Pllo, M., et al., "A broadband pattern diversity annular slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1596-1600, March 2012.
    doi:10.1109/TAP.2011.2180314

    7. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, October 2003.
    doi:10.1109/TAP.2003.817983

    8. Zhu, F.-G., J.-D. Xu, and Q. Xu, "Reduction of mutual coupling between closely packed antenna elements using defected ground structure," Electronics Letters, Vol. 45, No. 12, 601-602, 2009.
    doi:10.1049/el.2009.0985

    9. Diallo, A., "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3063-3073, November 2006.
    doi:10.1109/TAP.2006.883981

    10. Bait-Suwailam, M. M., O. Siddiqui, and O. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
    doi:10.1109/LAWP.2010.2074175

    11. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.
    doi:10.1049/el:20030495

    12. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, June 2008.
    doi:10.1109/TAP.2008.923306

    13. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
    doi:10.1109/LAWP.2010.2042565

    14. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander- line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
    doi:10.1109/LAWP.2012.2237156

    15. Park, J., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
    doi:10.1109/ACCESS.2019.2923330

    16. Mohamadzade, B., A. Lalbakhsh, R. B. V. B. Simorangkir, A. Rezaee, and R. M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020.
    doi:10.2528/PIERM19100703