Vol. 100

Latest Volume
All Volumes
All Issues
2021-10-15

High Gain and Wide Bandwidth Array Antenna for Sector Beam Pattern Synthesis

By Ayyadevara Murali Maruti and Bhavan S. Naga Kishore
Progress In Electromagnetics Research Letters, Vol. 100, 109-116, 2021
doi:10.2528/PIERL21081304

Abstract

This paper presents a novel design structure of a series fed array antenna for desired shaped beam pattern synthesis. The desired beam shape is obtained by varying the width of patch elements. A uniform array is designed for the desired frequency, and then the proportionate values of the widths are calculated using amplitude coefficients obtained from the Woodward Lawson array synthesis method, while keeping excitation phase and inter element spacing constant. The proposed antenna is designed and simulated in HFSS. A prototype is fabricated on FR-4 epoxy dielectric material and tested at 12.5 GHz. The overall antenna has a compact size of 112 mm x 34 mm x 0.8 mm. The array structure exhibits impedance bandwidth of 1.8 GHz from 11 GHz to 12.8 GHz frequency range with return loss of -27.1 dB and high gain 14.2 dBi. The series fed configuration results in a VSWR of 1.38 and considerably low side lobe level of -24 dB in H-plane. There is a fine similarity between simulation and fabrication measurement parameter values such as return loss, VSWR, gain, and bandwidth.

Citation


Ayyadevara Murali Maruti and Bhavan S. Naga Kishore, "High Gain and Wide Bandwidth Array Antenna for Sector Beam Pattern Synthesis," Progress In Electromagnetics Research Letters, Vol. 100, 109-116, 2021.
doi:10.2528/PIERL21081304
http://test.jpier.org/PIERL/pier.php?paper=21081304

References


    1. Chu, H., P. Li, and Y.-X. Guo, "A beam-shaping feeding network in series con guration for antenna array with cosecant-square pattern and low side lobe," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 742-746, 2019.
    doi:10.1109/LAWP.2019.2901948

    2. Chen, J.-Y. and J.-S. Row, "Frequency recon gurable antennawith conical radiation pattern and wide tuning range," Progress In Electromagnetics Research Letters, Vol. 96, 147-152, 2021.
    doi:10.2528/PIERL21020602

    3. Akdagli, F. Guney, "Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using modi ed tabusearch algorithm," Microw. Opt. Technol. Lett., No. 1, 16-20, 2003.
    doi:10.1002/mop.10657

    4. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
    doi:10.1109/TAP.2003.816361

    5. Marcono, D. and F. Duran, "Synthesis of antenna arrays using genetic algorithms," IEEE Antennas and Propagation Mag., Vol. 42, No. 3, 12-22, 2000.
    doi:10.1109/74.848944

    6. Guo, J.-L. and J.-Y. Li, "Pattern synthesis of conformal array antenna in the presence of platform using differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2615-2621, 2009.
    doi:10.1109/TAP.2009.2027046

    7. Buonanno, G. and R. Solimene, "Study of unequally-excited random antenna arrays for beam shaping," Progress In Electromagnetics Research C, Vol. 85, 129-140, 2018.
    doi:10.2528/PIERC18052904

    8. Yuan, T., N. Yuan, and L.-W. Li, "A novel series-fed taper antenna array design," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 362-365, 2008.
    doi:10.1109/LAWP.2008.928487

    9. Chen, Z. and S. Otto, "A taper optimization for pattern synthesis of microstrip series-fed patch array antennas," Proc. 2nd European Wireless Technology Conference, 160-163, 2000.

    10. Singh, B., N. Sarwade, and K. P. Ray, "Compact series fed tapered antenna array using unequal rectangular microstrip antenna elements," Microw. Opt. Technol. Lett., Vol. 59, No. 8, 1856-1861, 2017.
    doi:10.1002/mop.30640

    11. Diawuo, H. A., S. J. Lee, and Y.-B. Jung, "Side lobe level reduction of a linear array using two amplitude tapering techniques," IET Microwaves, Antennas and Propagation, Vol. 11, 1432-437, 2017.
    doi:10.1049/iet-map.2016.0883

    12. Rajendran, S. and M. Thiyagarajan, "Performance comparison of S-band antenna with series fed and corporate fed microstrip array," International Journal of Engineering and Technology, Vol. 7, 1036-1039, 2018.

    13. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A slotted patch antenna with enhanced gain pattern for automotive applications," Progress In Electromagnetic Research Letters, Vol. 95, 135-141, 2021.
    doi:10.2528/PIERL20110103

    14. Metzler, T., "Microstrip series arrays," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 174-178, 1981.
    doi:10.1109/TAP.1981.1142543

    15. Chopra, R. and G. Kumar, "Series-and corner-fed planar microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 67, 5982-5990, 2019.
    doi:10.1109/TAP.2019.2922774

    16. Shirkolaei, M. M., "High efficiency X-band series-fed microstrip array antenna," Progress In Electromagnetic Research C, Vol. 105, 35-45, 2020.
    doi:10.2528/PIERC20061003

    17. Chopra, R. and G. Kumar, "Series-fed binomial microstrip arrays for extremely low side lobe level," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4275-4279, 2019.
    doi:10.1109/TAP.2019.2908108

    18. Bhattacharyya, A., D. Yang, and S. Nam, "Microstrip array antenna bandwidth enhancement using reactive surface," Microw. Opt. Technol. Lett., Vol. 62, 825-829, 2020.
    doi:10.1002/mop.32081

    19. Fondevila-Gomex, J., J. A. Rodriguex, F. Ares, and E. Moreno, "A simple way of obtaining optimized patterns using the Woodward-Lawson method," 2006 IEEE International Symposium, 3383-3386, 2006.

    20. Morabito, A. F., A. R. Lagana, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2015.
    doi:10.1109/LAWP.2014.2354514