Vol. 101

Latest Volume
All Volumes
All Issues
2021-11-30

Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands

By Yongwei Li, Quanyuan Feng, and Liguo Zhou
Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021
doi:10.2528/PIERL21090401

Abstract

In this paper, a dipole antenna is investigated for 5G New Radio portable devices. This antenna adopts the characteristics of multiple mode resonance. Then, by adjusting the spacing between dipole pairs, the antenna has a good impedance match in a wide frequency band. The -10 dB impedance bandwidth of the antenna is 2.31-5.34 GHz (79.2%). In the operation frequency band, the maximum gain and average gain of the antenna are 8.68 dBi and 4.67 dBi, respectively. It can be used in the 5G Sub-6 GHz NR frequency bands n7/n38/n41/n77/n78/n79 and also compatible with WLAN/WiMAX band.

Citation


Yongwei Li, Quanyuan Feng, and Liguo Zhou, "Dipole Antenna Design for Portable Devices Operating in the 5G NR Frequency Bands," Progress In Electromagnetics Research Letters, Vol. 101, 43-48, 2021.
doi:10.2528/PIERL21090401
http://test.jpier.org/PIERL/pier.php?paper=21090401

References


    1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Commun. Surv. Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
    doi:10.1109/COMST.2016.2532458

    2., "3GPP specification series: 38 series,", 2020, [Online]. Available: https://www.3gpp.org/DynaReport/38-series.htm.
    doi:10.1109/COMST.2016.2532458

    3. Jin, G., C. Deng, Y. Xu, J. Yang, and S. Liao, "Differential frequency-reconfigurable antenna based on dipoles for sub-6 GHz 5G and WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 3, 472-476, 2020.
    doi:10.1109/LAWP.2020.2966861

    4. Zeng, J. and K. M. Luk, "Single-layered broadband magnetoelectric dipole antenna for new 5G application," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 911-915, 2019.
    doi:10.1109/LAWP.2019.2905768

    5. Sim, C. Y. D., H. Y. Liu, and C. J. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 1, 74-78, 2020.
    doi:10.1109/LAWP.2019.2953334

    6. Tefiku, F. and E. Yamashita, "Double-sided printed strip antenna for dual frequency operation," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1, 50-53, 1996.

    7. Tefiku, F. and C. A. Grimes, "Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 895-900, 2000.
    doi:10.1109/8.865221

    8. Quan, X., R. Li, Y. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 547-550, 2012.
    doi:10.1109/LAWP.2012.2199458

    9. Li, R. L., X. L. Quan, Y. H. Cui, and M. M. Tentzeris, "Directional triple-band planar antenna for WLAN/WiMax access points," Electron. Lett., Vol. 48, No. 6, 305-306, 2012.
    doi:10.1049/el.2011.3448

    10. Tao, J. and Q. Feng, "Dual-band magnetoelectric dipole antenna with dual-sense circularly polarized character," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 5677-5685, Nov. 2017.
    doi:10.1109/TAP.2017.2748282

    11. Tao, J., Q. Feng, and T. Liu, "Dual-wideband magnetoelectric dipole antenna with director loaded," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 10, 1885-1889, 2018.
    doi:10.1109/LAWP.2018.2869034

    12. Tao, J., Q. Feng, G. A. E. Vandenbosch, and V. Volskiy, "Director-loaded magneto-electric dipole antenna with wideband at gain," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6761-6769, 2019.
    doi:10.1109/TAP.2019.2925200

    13. Guo, Y. Q., Y. M. Pan, and S. Y. Zheng, "Design of series-fed, single-layer, and wideband millimeter-wave microstrip arrays," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 7017-7026, 2020.
    doi:10.1109/TAP.2020.3008668