This letter proposes a differentially-fed broadband dipole and its 1×8 array. The antenna achieves cost-effectiveness by using a low-cost FR4 substrate. The antenna obtains surface mount capability due to the ball grid array (BGA) package. The measured results show that the proposed antenna array achieves a wide impedance bandwidth of 37.8% (24-35.2 GHz). The gain of the 1×8 array is greater than 10.1 dBi, and the cross-polarization level in the main beam direction is less than -20 dB. the radiation pattern of the 1×8 array is stable and unidirectional. The proposed antenna array covers the 5G N257 (26.5-29.5 GHz), N258 (24.25-27.5 GHz), and N261 (27.5-28.35 GHz) bands.
2. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993
3. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "A magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6395-6402, Dec. 2017.
doi:10.1109/TAP.2017.2722868
4. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514
5. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888
6. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899
7. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267
8. Zhang, Y., "Antenna-in-package technology: Its early development [Historical Corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916
9. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412
10. Liu, X., W. Zhang, D. Hao, and Y. Liu, "Cost-effective surface-mount off-center-fed dipole antenna element and its array for 5G millimeter wave new radio applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 7, 1106-1114, Jul. 2021.
doi:10.1109/TCPMT.2021.3085860
11. Ali, M., et al., "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 9, 1515-1523, Sep. 2020.
doi:10.1109/TCPMT.2020.3013725
12. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface-mount PIFA using ball grid array packaging for 5G mmWave," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
doi:10.2528/PIERL21050203
13. Li, M. and K. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3651-3656, Aug. 2016.
doi:10.1109/TAP.2016.2565726
14. Xue, Q., X. Y. Zhang, and C.-K. Chin, "A novel differential-fed patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 471-474, 2006.
doi:10.1109/LAWP.2006.885168