Vol. 102

Latest Volume
All Volumes
All Issues
2022-01-28

Low Losses and Compact Size Microstrip Diplexer Based on Open-Loop Resonators with New Zigzag Junction for 5G Sub-6-GHz and Wi-Fi Communications

By Souhaila Ben Haddi, Asmaa Zugari, and Alia Zakriti
Progress In Electromagnetics Research Letters, Vol. 102, 109-117, 2022
doi:10.2528/PIERL21120305

Abstract

In this paper, a high-performance microstrip diplexer is designed and manufactured. The design is based on two pairs rectangular open-loop resonators band-pass filters and a novel zigzag junction. It operates at 3.5 GHz for fifth-generation 5G sub-6-GHz and 5 GHz for Wi-Fi communications. The proposed diplexer is considerably miniaturized with a global compact size of 30×17 mm2. In addition, it presents low insertion losses less than 0.5 dB at both channels in comparison with the previous diplexers. Moreover, the isolation is higher than 20 dB, and the return loss is better than 14 dB at the bandwidths. To confirm the simulation results, the presented diplexer is manufactured and measured where a good agreement is carried out.

Citation


Souhaila Ben Haddi, Asmaa Zugari, and Alia Zakriti, "Low Losses and Compact Size Microstrip Diplexer Based on Open-Loop Resonators with New Zigzag Junction for 5G Sub-6-GHz and Wi-Fi Communications," Progress In Electromagnetics Research Letters, Vol. 102, 109-117, 2022.
doi:10.2528/PIERL21120305
http://test.jpier.org/PIERL/pier.php?paper=21120305

References


    1. Ezhilarasan, E. and M. Dinakaran, "A review on mobile technologies: 3G, 4G and 5G," 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), 369-373, 2017.

    2. Yu, H., H. Lee, and H. Jeon, "What is 5G? Emerging 5G mobile services and network requirements," Sustainability, Vol. 9, No. 10, 1848, 2017.
    doi:10.3390/su9101848

    3. Kim, D., "A 2020 perspective on 'A dynamic model for the evolution of the next generation Internet-Implications for network policies': Towards a balanced perspective on the Internet's role in the 5G and Industry 4.0 era," Electron. Commer. Res. Appl., Vol. 41, 100966, 2020.
    doi:10.1016/j.elerap.2020.100966

    4. Magsi, H., A. H. Sodhro, F. A. Chachar, S. A. K. Abro, G. H. Sodhro, and S. Pirbhulal, "Evolution of 5G in Internet of medical things," 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 1-7, 2018.

    5. Rao, S. K. and R. Prasad, "Impact of 5G technologies on industry 4.0," Wirel. Pers. Commun., Vol. 100, No. 1, 145-159, 2018.
    doi:10.1007/s11277-018-5615-7

    6. Fady, B., J. Terhzaz, A. Tribak, F. Riouch, and A Mediavilla Sanchez, "Novel miniaturized planar low-cost multiband antenna for industry 4.0 communications," Progress In Electromagnetics Research C, Vol. 93, 29-38, 2019.
    doi:10.2528/PIERC19030809

    7. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "Design of a band-stop planar filter for telecommunications applications," Procedia Manuf., Vol. 46, 788-792, 2020.
    doi:10.1016/j.promfg.2020.04.006

    8. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "A compact microstrip t-shaped resonator band pass filter for 5G applications," 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-5, 2020.

    9. Achraou, S., H. Elftouh, A. Farkhsi, A. Zakriti, and S. Ben Haddi, "Substrate integrated waveguide bandpass filter for mm-Wave applications," Procedia Manuf., Vol. 46, 766-770, 2020.
    doi:10.1016/j.promfg.2020.04.002

    10. Jamshidi, M., A. Lalbakhsh, S. Lotfi, H. Siahkamari, B. Mohamadzade, and J. Jalilian, "A neuro-based approach to designing a Wilkinson power divider," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 3, e22091, 2020.

    11. Rezaei, A., L. Noori, and M. H. Jamaluddin, "Novel microstrip lowpass-bandpass diplexer with low loss and compact size for wireless applications," AEU --- International J. Electron. Commun., Vol. 101, 152-159, 2019.
    doi:10.1016/j.aeue.2019.02.005

    12. Upadhyaya, T., J. Pabari, V. Sheel, A. Desai, R. Patel, and S. Jitarwal, "Compact and high isolation microstrip diplexer for future radio science planetary applications," AEU --- International J. Electron. Commun., Vol. 127, 153497, 2020.
    doi:10.1016/j.aeue.2020.153497

    13. Ghosh, P., "Microwave and satellite communications," TEMS J. Technology Eng. Maths Sci., Vol. 3, No. 2, 90-91, 2021.

    14. Saleh, S., W. Ismail, and I. S. Z. Abidin, "5G Hairpin and interdigital bandpass filters," Int. J. Integr. Eng., Vol. 12, No. 6, 71-79, 2020.
    doi:10.30880/ijie.2020.12.06.009

    15. Al-Yasir, Y., R. A. Abd-Alhameed, J. M. Noras, A. M. Abdulkhaleq, and N. O. Parchin, "Design of very compact combline band-pass filter for 5G applications," The Loughborough Antennas & Propagation Conference (LAPC 2018), 1-4, 2018.

    16. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

    17. Ben Haddi, S., A. Zugari, A. Zakriti, and S. Achraou, "5G narrow-band band-pass filter using parallel coupled lines and L-shaped resonator," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-4, 2020.

    18. Saieed, A., W. Pao, and H. M. Ali, "Prediction of phase separation in a T-Junction," Exp. Therm. Fluid Sci., Vol. 97, 160-179, 2018.
    doi:10.1016/j.expthermflusci.2018.04.019

    19. Chinig, A., et al., "A new microstrip diplexer using coupled stepped impedance resonators," Int. J. Electr. Comput. Energ. Electron. Commun. Eng., Vol. 9, No. 1, 41-44, 2015.

    20. Yousif, A. B. and S. E. Ahmed, "A dual-band coupled line based microstrip diplexer for wireless applications," J. Glob. Sci. Res., Vol. 10, 845-853, 2020.

    21. Salehi, M. R., S. Keyvan, E. Abiri, and L. Noori, "Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems," AEU --- International J. Electron. Commun., Vol. 70, No. 7, 961-969, 2016.
    doi:10.1016/j.aeue.2016.04.015

    22. Chinig, A., et al., "A new microstrip diplexer using open-loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 13, No. 2, 185-196, 2014.
    doi:10.1590/S2179-10742014000200007

    23. Rezaei, A., S. I. Yahya, L. Nouri, and M. H. Jamaluddin, "Design of a low-loss microstrip diplexer with a compact size based on coupled meandrous open-loop resonators," Analog Integr. Circuits Signal Process., Vol. 102, No. 3, 579-584, 2020.
    doi:10.1007/s10470-020-01625-w

    24. Nwajana, A. O. and K. S. K. Yeo, "Microwave diplexer purely based on direct synchronous and asynchronous coupling," Radioengineering, Vol. 25, No. 2, 247-252, 2016.
    doi:10.13164/re.2016.0247

    25. Chinig, A., A. Errkik, L. El Abdellaoui, A. Tajmouati, J. Zbitou, and M. Latrach, "Design of a microstrip diplexer and triplexer using open loop resonators," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 15, 65-80, 2016.
    doi:10.1590/2179-10742016v15i2602