Vol. 103

Latest Volume
All Volumes
All Issues
2022-02-20

Study on the Effect of the Feedline Inductance in Wideband Tunable Band Pass Combline Filters

By Seyed Mostafa Mousavi, Javad Soleiman Meiguni, and David Pommerenke
Progress In Electromagnetics Research Letters, Vol. 103, 25-30, 2022
doi:10.2528/PIERL22011304

Abstract

This letter proposes a novel analysis and design method of a continuously adjustable bandpass combline filter. It investigates the feedline design specifications and introduces an external quality factor (Qext) tuning structure to achieve a constant fractional bandwidth over 60% tuning bandwidth. The design approach allows to determine the optimum feedline structure for the filter andis verified by full-wave simulation and measurement. The results show a constant fractional bandwidth of 4.5% over the entire operating frequency range between 225-400 MHz.

Citation


Seyed Mostafa Mousavi, Javad Soleiman Meiguni, and David Pommerenke, "Study on the Effect of the Feedline Inductance in Wideband Tunable Band Pass Combline Filters," Progress In Electromagnetics Research Letters, Vol. 103, 25-30, 2022.
doi:10.2528/PIERL22011304
http://test.jpier.org/PIERL/pier.php?paper=22011304

References


    1. Ebrahimi, A., T. Baum, J. Scott, and K. Ghorbani, "Continuously tunable dual-mode bandstop filter," IEEE Microwave and Wireless Components Letters, 419-421, 2018.
    doi:10.1109/LMWC.2018.2821841

    2. Jones, A. T. R. and M. Daneshmand, "Miniaturized folded ridged quarter-mode substrate integrated waveguide RF MEMS tunable bandpass filter," IEEE Access, Vol. 8, 115837-115847, 2020.
    doi:10.1109/ACCESS.2020.3004116

    3. Danilov, Y. Y., G. G. Denisov, M. A. Khozin, A. Panin, and Y. Rodin, "Millimeter-wave tunable notch filter based on waveguide extension for plasma diagnostics," IEEE Transactions on Plasma Science, Vol. 42, No. 6, 1685-1689, 2014.
    doi:10.1109/TPS.2014.2318352

    4. Polat, E., R. Reese, M. Jost, C. Schuster, M. Nickel, R. Jakoby, and H. Maune, "Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 1, 44-46, 2019.
    doi:10.1109/LMWC.2018.2884152

    5. Mansour, A. A. and T. S. Kalkur, "Switchable and tunable BAW duplexer based on ferroelectric material," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, No. 12, 2224-2230, 2016.
    doi:10.1109/TUFFC.2016.2614941

    6. Renedo, M. S., R. G. Garcia, J. I. Alonso, and C. B. Rodriguez, "Tunable combline filter with continuous control of center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 191-199, 2005.
    doi:10.1109/TMTT.2004.839309

    7. Penalva, G. T., G. L. Risue~no, and J. I. Alonso, "A simple method to design wide-band electronically tunable combline filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 172-177, 2002.
    doi:10.1109/22.981262

    8. Kurudere, S. and V. B. Erturk, "Novel microstrip fed mechanically tunable combline cavity filter," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 578-580, 2013.
    doi:10.1109/LMWC.2013.2281432

    9. Renedo, M. S., "High-selectivity tunable planar combline filter with source/load-multiresonator coupling," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 513-515, 2007.
    doi:10.1109/LMWC.2007.899313

    10. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, 1999.
    doi:10.1109/22.754877

    11. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
    doi:10.1109/TMTT.2002.806937

    12. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
    doi:10.1002/0471221619