The electromagnetic wave perfect absorption of metamaterial is focused on by scientists currently. Conventional studies typically use a basic unit cell and then develop the entire structure in production. In this paper, we study and use a full-sized twisted metamaterial structure with the expectation that this structure will reveal outstanding advantages and possess excellent electromagnetic absorption properties. The structure of the twisted metamaterial consists of two coincident layers of cyclic lattice stacked on top of each other. When one lattice layer rotates at a specified angle relative to the other, it generates a new lattice configuration and increases the absorption of the structure. Therefore, the frequency band widens up to 6 GHz.
2. Luican, A., G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, "Single-layer behavior and its breakdown in twisted graphene layers," Phys. Rev. Lett., Vol. 106, 126802, 2011, https://doi.org/10.1103/PhysRevLett.106.126802.
3. Veselago, V. G., "The electrodynamics of substances with negative ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968, https://doi.org/10.1070/PU1968v010n04ABEH003699.
4. Tran, M. C., T. T. Nguyen, T. H. Ho, and H. T. Do, "Creating a multiband perfect metamaterial absorber at K frequency band using defects in the structure," J. Electron. Mater., Vol. 46, 413, 2017, http://dx.doi.org/10.1007/s11664-016-4863-0.
5. Wilbert, D. S., M. P. Hokmabadi, P. Kung, and S. M. Kim, "Equivalent-circuit interpretation of the polarization insensitive performance of THz metamaterial absorbers," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 846, 2013, https://doi.org/10.1109/TTHZ.2013.2285311.
6. Khanna, Y. and Y. K. Awasthi, "Ultra-thin wideband polarization-insensitive metasurface absorber for aviation technology," J. Electron. Mater., Vol. 49, 6410-6416, 2020.
7. Carranza, I. E., G. James, G. John, and C. David, "Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays," IEEE J. Sel. Top. Quantum Electron., Vol. 23, 4700508, 2017, 10.1109/JSTQE.2016.2630307.
8. Fatih, O. A., A. Olcay, O. Meliksah, K. Muharrem, A. Oguzhan, U. Emin, and S. Cumali, "Enhancement of image quality by using metamaterial inspired energy harvester," Phys. Lett. A, Vol. 384, No. 1, 126041, 2020, https://doi.org/10.1016/j.physleta.2019.126041.
9. Lei, Z., Y. W. Rui, D. B. Guo, T. W. Hao, M. Qian, Q. C. Xiao, and J. C. Tie, "Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves," Adv. Funct. Mater., Vol. 28, 33, 2018, https://doi.org/10.1002/adfm.201802205.
10. Banerjee, S., P. Dutta, A. K. Jha, P. R. Tripati, A. Srinivasulu, B. Appasani, and C. Ravariu, "A triple band highly sensitive refractive index sensor using terahertz metamaterial perfect absorber," Progress In Electromagnetics Research M, Vol. 107, 13-23, 2022.
11. Appasani, B., "An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021.
12. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015, https://doi.org/10.1063/1.4918289.
13. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, "Design of a four-band and polarization-insensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 2014, https://doi.org/10.1109/JPHOT.2014.2381633.
14. Ma, J.-J., W. H. Tong, K. Shi, X.-Y. Cao, and B. Gong, "A broadband metamaterial absorber using fractal tree structure," Progress In Electromagnetics Research Letters, Vol. 49, 73-78, 2014.
15. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, 19, 2012, https://doi.org/10.1007/s00339-012-6936-0.
16. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Broadband and wide-angle re ective linear polarization," Appl. Phys. Lett., Vol. 105, 181111, 2014, https://doi.org/10.1063/1.5116149.
17. Tran, S. T. and T. Q. H. Nguyen, "Defect induced co-polarization broadband metamaterial absorber," AIP Advances, Vol. 9, 055321, 2019, https://doi.org/10.1063/1.5097198.
18. He, S. and T. Chen, "Broadband THz absorbers with graphene-based anisotropic metamaterial films," IEEE Trans. Terahertz Sci. Technol., Vol. 3, 757, 2013, Doi: 10.1109/TTHZ.2013.2283370.
19. Liu, X., Q. Zhang, and X. Cui, "Ultra-broadband polarization-independent wide-angle THz absorber based on plasmonic resonances in semiconductor square nut-shaped metamaterials," Plasmonics, Vol. 12, No. 4, 1137, 2017, https://doi.org/10.1007/s11468-016-0368-1.
20. Gu, S., B. Su, and X. Zhao, "Planar isotropic broadband metamaterial absorber," J. Appl. Phys., Vol. 114, 163702, 2013, https://doi.org/10.1063/1.4826911.
21. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017, https://doi.org/10.1063/1.4979543.
22. Tang, J., Z. Xiao, K. Xu, X. Ma, and Z. Wang, "Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle," Plasmonics, Vol. 11, No. 5, 1393, 2016, https://doi.org/10.1007/s11468-016-01892.
23. Tran, M. C., H. P. Van, H. H. Tuan, T. T. Nguyen, H. T. Do, X. K. Bui, S. T. Bui, D. T. Le, T. L. Pham, and D. L. Vu, "Broadband microwave coding metamaterial absorbers," Scientific Reports, Vol. 10, 1810, 2020, https://doi.org/10.1038/s41598-020-58774-1.